Understanding the Sodium Ion Transport Properties, Deintercalation

Mechanism, Phase Evolution of Na₂Mn₂Si₂O₇ Cathode by Atomistic Simulation

Yuting Xie, Keshu Dai, Qinyun Wang, FanPei Gu, Miao Shui*, Jie Shu

The State Key Laboratory base of Novel Functional Materials and Preparation science;

The Faculty of Materials Science and Chemical Engineering, Ningbo Univ., Ningbo, 315211 P. R.

China

^{*} Correspondence author, E-mail: shuimiao@nbu.edu.cn; Tel: +86-574-87600787

interation	Dij/eV	Aij/Å ⁻²	r/ Å	Cij /eV ·Å ¹²
O ^{1.2-} O ^{1.2-}	0.042395	1.379316	3.618701	22.0^{1}
Si ^{2.4+} O ^{1.2-}	0.340554	2.0067	2.1	1^{1}
Mn ^{1.8+} O ^{1.2-}	0.818169	1.743523	2.216688	3
Mn ^{1.2+} O ^{1.2-}	0.029658	1.997543	2.852075	31
Na ^{0.6+} O ^{1.2-}	0.02336	1.76387	3.00631	5 ¹

Tab. S1 Interatomic potentials used for the Na₂Mn₂Si₂O₇ cathode material

Tab. S2 Input Fractional Coordinates of $Na_2Mn_2Si_2O_7$ (P21/c) structural parameters for calculation

ion	Х	У	Z	Occ.	site
Na1	0.17725	0.00175	0.03425	1	4e
Na2	0.029	0.0205	0.0845	1	4e
Mn1	0.2425	0.0295	0.20475	1	4e
Mn2	0.1125	0.0415	0.046	1	4e
Si1	0.07625	0.06125	0.18025	1	4e
Si2	0.154	0.04025	0.16775	1	4e
O1	0.23925	0.05225	0.15525	1	4e
O2	0.022	0.0095	0.17475	1	4e
O3	0.15425	0.03325	0.06675	1	4e
O4	0.006	0.04125	0.0175	1	4e
O5	0.07975	0.03875	0.093	1	4e
O6	0.20325	0.01375	0.20725	1	4e
07	0.10375	0.0285	0.23375	1	4e

Tab. S3 Deviation (Δ) between calculated and experimental structures of the Na₂Mn₂Si₂O₇ cathode

parameter	calcd	exptl	Deviation Δ %
a	8.8566	8.757	1.14
b	13.4453	13.294	1.14
с	5.8074	5.744	1.10
$\alpha = \beta(\text{deg})$	90	90	
γ	90.17	90.17	

material from Pedone potential model used in MD calculations

	ina experimentar oor			
ion pair	calcd (Å)	exptl (Å)	Δ /%	
Nal-O4	2.48763	2.4231	2.66312	
Na1-O7	2.38527	2.3377	2.03491	
Na1-O5	2.39549	2.3381	2.45456	
Na1-O3	2.37101	2.3266	1.90879	
average Na1-O	2.4099	2.3564	2.27041	
Na2-O6	2.43855	2.4034	1.46251	
Na2-O3	2.36414	2.3503	0.58886	
Na2-O4	2.61347	2.5167	3.84511	
Na2-O7	2.45826	2.4091	2.0406	
average Na2-O	2.4686	2.4199	2.01248	
Mn1-O3	2.05745	2.0040	2.66717	
Mn1-O7	2.05039	1.9837	3.3619	
Mn1-O6	2.10279	2.0919	0.52058	
Mn1-O2	2.13520	2.0965	1.84593	
average Mn1-O	2.0865	2.0440	2.07926	
Mn2-O5	2.08829	2.0342	2.65903	
Mn2-O2	2.20287	2.1691	1.55687	
Mn2-O4	2.14652	2.0564	4.38242	
Mn2-O6	2.23579	2.1511	3.93706	
Mn2-O2	2.44901	2.4040	1.8723	
average Mn2-O	2.2245	2.1630	2.84327	
Si1-O4	1.60220	1.6397	2.287	
Si1-O2	1.58642	1.6365	3.06019	
Sil-Ol	1.63119	1.6641	1.97765	
Si1-O6	1.57145	1.6110	2.455	
average Si1-O	1.5978	1.6378	2.4423	
Si2-O3	1.57471	1.5982	1.46978	
Si2-O5	1.57872	1.5846	0.37107	
Si2-O1	1.67100	1.7018	1.80985	
Si2-O7	1.58439	1.6170	2.0167	
average Si2-O	1.6022	1.6254	1.42734	

Tab. S4 Calculated and experimental bond lengths

Fig. S1 c view of the panorama of the possible diffusion paths inside a $3 \times 3 \times 3$ super cell

Fig. S2 a view of the panorama of the possible diffusion paths inside a $3 \times 3 \times 3$ super cell

Fig. S3 c view image of the superimposed Na^+ trajectories combined with the positions of Na and Mn atoms at the simulation temperature of 1200 K

Fig. S4 The relaxed structure of the four intermediate phases at their base ground at deintercalation level x=0.25, 0.50, 0.75 and 0.875, respectively. The dash line circles indicate the vacancy realized by the deintercalation of the sodium ions; A pair of solid arrow lines suggests the inward movement of the left sodium ions with the deintercalation of the sodium ions;

Fig. S5 The relationship between lattice parameter a, b, c and the cell volume and the deintercalation level x.

References

[1]Alfonso Pedone, Gianluca Malavasi, M. Cristina Menziani, Alastair N. Cormack and Ulderico Segre, *J. Phys. Chem. B*, 2016,**110**, 11780-11795.