Oxygen-substituted borophene as a potential anode material for Li/Na-ion batteries: A first principles study

Yao Wu^a, Bicheng Zhang^a and Jianhua Hou^{*a,b}

^aSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China.
^bEngineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, PR China.

Corresponding author: houjh163@163.com

Supplementary information:

Figure S1 Optimized low-energy geometries of HBS oxides. The corresponding lattice constants and energies are labeled down below.

Figure S2 Optimized unit structure of h-B₃O monolayer, bond lengths are in angstroms (Å).

Figure S3 Variation of the potential energies and the temperatures of h-B₃O monolayer in molecular dynamics (MD) simulations at (a) 300 K and (b) 600 K, the corresponding snapshots of the final frame of h-B₃O monolayer after lasting for 5.0 ps.

Figure S4 Top and side views of the optimized structures of (a) $Li_{0.25}B_3O$; (b) $Li_{0.5}B_3O$; (c) $Li_{0.75}B_3O$; (d) $Li_{1.0}B_3O$; (e) $Li_{1.25}B_3O$; (f) $Li_{1.5}B_3O$; (g) $Li_{1.75}B_3O$; (h) $Li_{2.0}B_3O$ and (i) $Li_{3.0}B_3O$ with Li atoms adsorbed on the surface of *h*-B₃O monolayer. The B, O and Li atoms are denoted by pink, red and purple balls, respectively.

Figure S5 Top and side views of the optimized structures of (a) $Na_{0.25}B_3O$; (b) $Na_{0.5}B_3O$; (c) $Na_{0.75}B_3O$ and (d) $Na_{1.0}B_3O$ with Na atoms adsorbed on the surface of *h*-B₃O monolayer. The B, O and Na atoms are denoted by pink, red and blue balls, respectively.

Metal atoms	Initial sites	Final sites	Adsorption energies (eV)	Adsorption heights (Å)
Li	H1	H1	-2.33	1.818
	H2	H2	-1.86	1.712
	T1	H1	-2.33	1.809
	Τ2	H2	-1.86	1.701
	B1	H1	-2.33	1.792
	B2	H2	-1.86	1.717
Na	H1	H1	-1.70	2.311
	H2	H2	-1.33	2.243
	T1	H1	-1.70	2.293
	Τ2	T2	-1.27	2.077
	B 1	H2	-1.33	2.250
	B2	Τ2	-1.27	2.100

Table S1 The adsorption energies, initial sites, final sites and adsorption heights forLi/Na atom adsorbed on h-B₃O monolayer surface.