Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary material

Supplementary material for Nitroethane at high density: an experimental and computational vibrational study

Akio Yoshinaka^{1,2}, Serge Desgreniers¹, and Anguang Hu²

¹Laboratoire de physique des solides denses, Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

²Defence R&D Canada Suffield Research Centre, Medicine Hat, Alberta, Canada T1A 8K6

Summary

The supplementary material section of this publication contains figures showing the comparison between DFT calculations and experimental results, additional pressure induced vibrational mode progressions and vibrational band shapes.

This section also incorporates the tabulated summary of all vibron modes of the free nitroethane (NE) molecule. A video animation file for the free NE molecule (in Gaussian output format¹) has also been included.

Finally, video animations of the molecular motions within the monoclinic unit cell, as predicted by DFT calculations, for pressures ranging between 1.5 and 16 GPa are also included electronically in this section. The output format for these animations is compatible with the Molden² software.

Figure S-1: Calculated vibrational spectra for NE free molecule compared with experimental Raman and IR vibrational spectra of ambient liquid NE. Calculated mode wavenumbers were scaled by 0.961.

3

Table S-1: Vibrational modes of nitroethane. Vibrational wavenumbers (in cm⁻¹) of liquid nitroethane under ambient temperature and pressure observed in this study compared to that from previous studies. Predicted mode wavenumbers and assignments are based on DFT calculations as described in the text. Each mode assignment typically results from vibrations in more than one bond; strongest contributions (stretching and/or angular deformation) appear first in bold based on relative magnitude of displacements. Wavenumbers without assignment are due to harmonics or combination bands.

	Smith ³ Geiseler ⁴					Courtecuisse⁵				This work			
IR	IR	Raman	IR	Raman		Raman		IR	Raman	DFT calculation (B3LYP, 6-31G**)			
Vapor	Liq.	Liq.	Liq.	Liq.	Assignment	Liq.	Assignment	Liq.	Liq.	Single molecule	Assignment	Mode #	
										27.1	τ skeletal	1	
										219.3	$\tau + \nu_s CH_3$, τ skeletal	2	
		295		298	-				297	281.9	δ C-C-N , ρ NO ₂ , ω CH ₂ , ρ(i.pl.) CH ₃	3	
	~495	491	493	494	ρNO_2	494	ρNO_2		492	491.8	ρ+δ NO₂, δ C-C-N , ρ(i.pl.) CH ₃ , ω CH ₂ , ν C-N, ν C-C, ν N-O	4	
						614	ωNO ₂		592	565.1	ω+ν_s+δ NO₂, ρ+τ+ν_s CH₂, τ skeletal	5	
~621	616	614	614	615	δ(sym)+ρ NO₂	618	δ(sym) NO₂		614	616.0	δ +v _s NO ₂ , δ O-N-C, δ (i.pl.)+v _s CH ₃ , δ C-C-N, ν C-N, ρ (i.pl.) CH ₃ , $ω$ + δ CH ₂	, 6	
807	810		810		?			811	811*	786.9	ρ +τ+ν _s CH ₂ , ρ (o.pl.) CH ₃ , $ω$ NO ₂ , δ (o.pl.)+ν _s CH ₃ , τ skeletal	7	
866													
876	875	874.7	878	878	v C-N	878	v C-N	875	877	848.2	δ+v_s NO₂, v C-N, ρ(i.pl.) CH₃, δ(i.pl.)+v _s CH ₃ , ω+δ CH ₂ , v C-C, δ O-N-C	8	
884													
985													
996	993	993	992	996	v C-C			995	997	973.9	ρ(i.pl.) CH₃, ω+δ CH₂, ν C-C, ν C-N , ν _s +δ NO ₂ , δ(i.pl.)+ν _s CH ₃ , δ C-C-N, δ O-N-C	, 9	
1005													
1103	1103	1101.6	1101	1106	ρ(o.pl.) CH₃	1095–995	ρ CH₃	1103	1104	1085.6	ρ (i.pl.) CH ₃ , ν C-C, δ C-C-N, δ(i.pl.)+ν _s CH ₃ , ρ+ν _a NO ₂ , ω CH ₂ , ν C-N	10	
1118													
~1124	1134		1131		ρ(i.pl.) CH₃			1134	1138	1116.6	ρ +τ+ν _s CH ₂ , ρ (o.pl.) CH ₃ , δ (o.pl.)+ν _s CH ₃ , $ω$ NO ₂ , $τ$ skeletal	11	
~1150													
~1260	1255	1267	1253	1269	$\tau \ CH_2$			1257	1265	1255.5	τ +ν _s CH ₂ , ρ(o.pl.) CH ₃ , δ(o.pl.)+ν _s CH ₃ , ω NO ₂ , τ skeletal	12	
~1326	1330	1331	1330	1333	ω CH₂			1330	1332	1316.9	ω+ν₅+δ CH₂, δ(i.pl.) CH₃, ρ(i.pl.) CH₃, ν C-N, ν C-C, ν N-O, δ O-N-C, δ NO₂	13	
1352													

Table continues on next page.

	Cura itala 3		Coicelar4 Counterview5										
Smith		Geiseler											
IR	IR	Raman	IR	Raman		Raman		IR	Raman	DFT calculation (B3LYP, 6-31G**)			
Vapor	Liq.	Liq.	Liq.	Liq.	Assignment	Liq.	Assignment	Liq.	Liq.	Single molecule	Assignment	Mode #	
1366	1365	1366.5	1368	1370	$\nu_{s}NO_{2}$	1395–1368	ν_sNO_2	1367	1369	1369.0	δ(umbrella, i.pl.)+v _s CH ₃ , v _s +δ NO ₂ , v C-N, δ+ω CH ₂ , δ O-N-C, v C-C	14	
1379											δ/umbrella inl)+v CH, v C-C		
1397	1395	1395	1395	1399	δ(sym) CH₃			1395	1398	1397.4	v C-N, ω+δ CH ₂ , ν _s +δ NO ₂ , δ O-N-C	15	
1406													
~1440	1441	1440	1440	1440	δ(sym) CH ₂	1440	δ(sym) CH ₃	1439	1444	1442.6	δ+ν₅ CH₂, ν C-C , δ(i.pl.) CH₃, ν₅+δ NO₂, δ C-C-N, δ O-N-C	16	
1458	~1452	1456	1450		?			1452	1453	1457.3	δ(o.pl.)+v_s CH ₃ , τ skeletal	17	
~1480	~1465		1463	1463	$\delta CH_3 + CH_2$			1463	1465	1467.7	δ(i.pl.)+ν_s CH₃, δ+ω CH₂, ν C-N, ν C-C	18	
1573	1560	1554	1559	1559	$\nu_a NO_2$	1555	ν_aNO_2	1558	1558	1609.7	ν_a+δ NO₂, δ O-N-C, δ C-C-N, ω+δ CH₂ , δ(umbrella, i.pl.) CH₃, ν C-N, ν C-C	19	
1588													
	1862												
	1946												
	1976												
	2075												
	2128												
	2208												
	2247												
	2315												
	2358												
~2435	2420												
	~2470												
	2560												
	2650								2652				
~2750	2750	2749							2750				
		2890	2880	2889	-			2882	2889				
2950	2950	2912	2903	2944	v. CH₃+CH₂	2950	v. CH₃	2913	2913	2954.7	ν₅+δ(i.pl.) CH ₃, ν C-C, δ C-C-N,	20	
								2970	2973	2980.7	<u>ω+νs CH2</u> νs+δ CH2, νa(i.pl.) CH3, δ C-C-N,	21	
		2071	2020	2071					2001	2022.0	v C-C		
		2971	2938	2971	V _a CH ₂				3001	3022.0	v_a CH ₂ , v_a (0.pl.) CH ₃ , τ skeletal	22	
3010	3000	3001	2990	3013	$\nu_a \! + \! \nu_s CH_3$			3000	3004	3022.4	ν _a (ι.pι.) CH ₃ , ν _s CH ₂ , ο C-C-N, δ O-N-C	23	
									3030	3044.7	ν_a (o.pl.) CH ₃ , ν_a CH ₂ , τ skeletal	24	
	~3225												
	3600												
	3680												
	4100												
	4270												
	4430												

 τ , torsion; δ, bending/scissoring; ρ , rocking; ω, wagging; ν, stretching (v_s , symmetric stretching; v_a , asymmetric stretching)

i.pl., deformation is symmetric with, or in the C-C-N-O $_2$ plane of symmetry

o.pl., deformation is asymmetric with, or out of the C-C-N-O_2 plane of symmetry

* Weak, peak requires fitting before baseline removal

Figure S-2: Raman vibrational spectra of NE at ~1.6 GPa in the high fingerprint (top for $v \leq 1500$ cm⁻¹) and functional group (top for $v \geq 1500$ cm⁻¹ and bottom) regions.

Figure S-3: Calculated pressure-induced vibrational mode shifts for external modes of nitroethane in the NE crystalline phase.

Figure S-4: Observed Raman vibrational band shape in the low wavenumber range at various pressures.

Figure S-5: Vibrational mode progressions as a function of pressure for assigned modes in the fingerprint region. Calculated (DFT) mode progressions for both Davydov components have been scaled as described in the text. Prefixes "e" and "i" denote external and internal modes, respectively. Suffixes "_1" and "_2" denote each Davydov components.

Figure S-6: Vibrational mode progression as a function of pressure for modes i23 and i24 in the functional group region. Calculated (DFT) mode progressions for both Davydov components have been scaled as described in the text. Prefixes "e" and "i" denote external and internal modes, respectively. Suffixes "_1" and "_2" denote each Davydov components.

Figure S-7: Pressure induced evolutions of modes i10 (top) and i22 (bottom). Dotted lines highlight four different IR sample loading. Subscript "NH" denotes the use of a non-hydrostatic ruby pressure standard, as described in the text.

Figure S-8: Comparison between Raman and IR vibrational spectra in the functional group region between pressures ~3.0-7.8 GPa. Legend symbol "↑" denotes a spectrum obtained during the pressure upstroke.

Supplementary References

¹R. Dennington, T. Keith, and J. Millam, in *GaussView Version 5.0.8* (Gaussian, Inc. Wallingford CT 06492 USA), 2009).

- ²G. Schaftenaar, and J. H. Noordik, Journal of Computer-Aided Molecular Design 14 (2000) 123.
- ³D. C. Smith, C. Y. Pan, and J. R. Nielsen, The Journal of Chemical Physics 18 (1950) 706.
- ⁴G. Geiseler, and H. Kessler, Berichte der Bunsengesellschaft für physikalische Chemie **68** (1964) 571.

⁵S. Courtecuisse *et al.*, The Journal of Chemical Physics **108** (1998) 7350.