Supporting Information

First-Principles Screening of Single Transition Metal Atom Anchored on Two-

Dimensional C₉N₄ for Nitrogen Reduction reaction

Qingling Meng^a, Ling Zhang^a, Jinge Wu^a, Shuwei Zhai^a, Xiamin Hao^a, Tianzhao Li^a,

Wenzhen Dou^a, Yizhen Jia^a, Biyu Song^a and Miao Zhou^{*a}

^a School of Physics, Beihang University, Beijing 100191, China

*Email: <u>mzhou@buaa.edu.cn</u>

Figure S1. The calculated partial DOS projected on the 5*d* orbitals of W and 2*p* orbitals of the neighboring N atoms for $W@C_9N_4$.

Figure S2. The relationship between binding energy (*E*_b) and electronegativity (χ) for

the 25 metal atoms.

Figure S3. The *ab initio* molecular dynamics simulated energy evolution for $W@C_9N_4$ at a temperature of 300 K. Insets show the top and side views of the snapshots of atomic configurations at 2 ad 5 ps.

Figure S4. The calculated bond length of the adsorbed N_2 on M@C₉N₄. The black dotted line represents the bond length of N_2 in the gas phase.

Figure S5. The calculated partial DOS projected on the molecular orbitals (red curves) of N₂ and the *d* orbitals (blue curves) of metal atoms for N₂ adsorption on Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Ni, Ru, Rh, Hf, Ta, Re, Os and Ir@C₉N₄. Fermi level is set to zero.

Figure S6. The calculated free energy diagrams of NRR on Nb, Mo, Ta, Re and Os@C₉N₄ along the distal pathway (top panel), Ti, V, Zr and Hf@C₉N₄ along the mixed pathway (middle panel), Fe and Ru@C₉N₄ along the alternating pathway (bottom panel).

Figure S7. The calculated adsorption energy of N₂, $E_{ad}(^*N_2)$, with reference to the adsorption energy of H, $E_{ad}(^*H)$, on M@C₉N₄. The red line is indicated to guide the eye.