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S1. BROWNIAN DYNAMICS SIMULATIONS

To perform Brownian dynamics (BD) simulations, we have used a customized version

of the simulation package BD BOX [1, 2]. The modification included the Lennard-Jones

interactions between all types of “macromolecules”, i.e., crowders and dumbbell enzymes,

as well as the tailored bounding potentials involved in the flexible dumbbell enzyme model.

Brownian dynamics trajectories have been generated by using the second order Iniesta-de

la Torre algorithm [2, 3]; within this algorithm, the position of ith bead at time t is

ri = r0
i +

1

2

∆t

kBT

N∑
j=1

(
D0

ijF
0
j + D′ijF

′
j

)
+ Ri, (S1)

where N is the number of beads, ∆t = t − t0 > 0 is the time step, r0
i is the position of

the ith bead at time t0, kB is the Boltzmann constant and T temperature. The (position-

dependent) diffusion matrix D0
ij (see below) and the force F 0

j acting on the jth bead are

evaluated at time t0, while D′ij and F ′j are evaluated for beads in a configuration with the

positions at an intermediate corrector step [3].

The 3N vector of random displacements, R̂ = {Ri}, is given by R̂ = B̂X̂, where X̂

is a random Gaussian vector, and the matrix B̂ = {Bij} is a ‘square root’ of the diffusion

tensor, i.e.,

D̂ = B̂B̂T (S2)

where D̂ = {Dij}. For the Iniesta-de la Torre algorithm, the diffusion matrix used in

eq. (S2) is (D̂0 + D̂′)/2, so that the random forces satisfy

〈Ri〉 = 0, 〈RiR
T
j 〉 = ∆t

(
D0

ij + D′ij
)
. (S3)

We used Cholesky decomposition to calculate B̂, as implemented in BD BOX; it was per-

formed each 100 steps to increase the performance, similarly as in ref. 4.
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A. Bounding potentials

We consider a system of two beads (enzyme subunits) with the bead-bead interaction

potential given by

U(`) =
16κ

(`o − `c)4
(`c − `)2(`o − `)2, (S4)

where `o and `c < `o correspond to the equilibrium separations in the ‘open’ and ‘closed’

states, respectively (Fig. 1 in the main text). Here, the characteristic energy set by the

“spring constant” κ corresponds to the height of the energy barrier separating the two

states. In order to model a system with all enzymes in the closed state due to binding a

substrate, we take the single-well interaction potential Uc

Uc(`) =
16κ

(`o − `c)4
(`c − `)2gc(`), (S5)

where

gc(`; `c, `o) =

(`o − `)2, if ` < `c

(`− 2`c + `o)
2, if ` > `c.

(S6)

It is easy to see that function gc(`) is continuous with continuous first derivative, thus

producing continuous forces. The choice above ensures a smooth matching with the double-

well potential U(`) (see main text) at the position of the minimum located at at `c.

B. Soft repulsion between pairs of particles (other than those belonging to the

same dumbbell)

In all the numerical simulations we included a repulsive van der Waals interactions

between any pairs of particles that did not belong to the same “enzyme”, i.e., between

crowder-crowder, crowder-enzyme, and enzyme-enzyme. This was computed as follows. Ev-

ery particle was approximated by an ensemble of closed-packed spheres of radii σ = 0.15 nm

(“atoms”); the interaction between the particles was then obtained via integration of the

atom-atom Lennard-Jones repulsive potential (i.e. LJ12) over the volumes of two interact-

ing particles. [5] If the closed-packed ensemble would lead to smooth spherical surfaces,

the procedure renders for the interaction between two spheres of radii a1,2 � σ separated
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(center-to-center) by a distance rij the expression [5]

V rep
LJ (rij) =

εLJπ
2

315

(
aiaj
ai + aj

)
σ6

[rij − (ai + aj)]
7 . (S7)

However, this is often not the case and the surface of the closed pack ensemble provides an

approximation as a rough surface, which can lead to significant decreases in the magnitude

of the particle-particle interaction. [6, 7]. Following ref. 4, we account for this effect by

introducing a roughness factor

A =
rij − (ai + aj)

rij − (ai + aj) + 0.5 (hi + hj)
, (S8)

where hi,j characterizes the roughness of the particles i, j, respectively, which multiplies

the right hand sides of eq. (S7) by A. The roughness may be estimated as the difference

between the hydrodynamic and gyration radii [4]. For simplicity, here we simply assume the

roughness to be of the order of the atom size, i.e., we take hi = σ(= 0.15 nm) for all i.

The aforementioned description of a large macromolecule as a sphere composed of small

van der Waals atoms leads to an counter-intuitive picture of the macromolecule, in which

the centers of van der Waals atoms are uniformly distributed over the volume of the whole

sphere, and thus the outermost ones are partially not within the macromolecule. In order to

ensure that all van der Waals atoms fit inside the macromolecules, for the sake of computing

interactions, hydrodynamic radii are decremented by a value equal to the radius of van der

Waals atom (we took σ = 0.15 nm)

ai 7→ a∗i = ai − σ. (S9)

Radii a∗i were also considered as a bead radius and used for computing occupied volumes.

In all the numerical simulations we used a lower and an upper cut-off for the distance

between pairs of particles, as follows. For particles with surface-to-surface separation below

0.1 nm, the repulsive force is assumed constant (and equal to the value at the 0.1 nm sepa-

ration). This is done in order to avoid numerical problems due to very large forces (note the

strong divergence of eq. (S7) at rij = ai +aj). The upper cutoff for computing (numerically)

van der Waals interactions was set to r
(max)
ij = 15 nm, i.e., we set V rep

LJ (rij ≥ r
(max)
ij ) = 0.

Finally, we note that for all the pairs of particles for which V rep
LJ is relevant we have used

εLJ = 0.37 kcal mol−1. This choice follows ref. 4, which successfully reproduced the in vivo

diffusion coefficient of the green fluorescent protein (GFP) in a complex model of cytoplasm

by using the εLJ value above.
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C. Hydrodynamic interactions

To account for hydrodynamic interactions, we employed the generalized Rotne-Prager-

Yamakawa tensor [8–10], which reads (ai is the bead’s hydrodynamic radius, rij the center-

to-center separation between the i’th and j’th beads, η is viscosity, and I is the unit tensor):

Dii =
kBT

6πηai
I; (S10a)

Dij(rij) =
kBT

8πηrij

[(
1 +

a2i + a2j
3r2ij

)
I +

(
1− a2i + a2j

r2ij

)
rijr

T
ij

r2ij

]
(S10b)

for rij > ai + aj;

Dij(rij) =
kBT

8πηrij

[
16r3ij(aj + aj)− [(ai − aj)2 + 3r2ij]

2

32r3ij
I +

3[(ai − aj)2 − r2ij]2
32r3ij

rijr
T
ij

r2ij

]
(S10c)

for aMij − amij < rij < ai + aj, where aMij is the largest and amij the smallest of ai and aj; and

Dij =
kBT

6πηaMij
I, (S10d)

for rij < aMij − amij .

D. Simulation parameters

The box size was 25 nm× 25 nm× 25 nm and periodic boundary conditions were applied

in all three directions. In order to account for the long-range character of the hydrodynamic

interactions, we used the Ewald summation [11], as implemented in the BD BOX [1, 2]. The

parameter controlling the convergence of the Ewald summation was
√
π (default value in

BD BOX). The maximal magnitude of both real and reciprocal lattice vectors was 2. For

computational efficiency, the diffusion tensor was updated once per 100 steps [4, 12] (each

update causes the Cholesky decomposition).

In all the numerical simulations the temperature was set to T = 298.15 K (room tem-

perature) and the viscosity of the medium (need for the computation of the hydrodynamic

interactions) was set to the value η = 1.02 cP, corresponding to water.

The time step ∆t (eq. (S1)) was set to 0.5 ps; a BD simulation runs for at least 4× 1010

iterations steps, i.e., a total time of at least 10 µs.



5

E. Trajectory analysis

We used FREUD library [13] to calculate mean square displacement MSD = 〈|r(t) −
r(0)|2〉

MSD(m∆t) =
1

Ntraj

Ntraj∑
i=1

1

Nsteps −m

Nsteps−m−1∑
k=0

{ri [(k +m)∆t]− ri [k∆t]}2, (S11)

where Ntraj is the number of trajectories and Nsteps the total number of steps. The shift ∆t

in trajectory analysis was 5 ns.

The time-dependent relative apparent diffusion coefficient is:

D(t)

D0

=
MSD(t)

6D0t
, (S12)

where D0 is diffusion coefficient in infinite dilution. For a spherical particle, D0 is given by

the Stokes-Einstein equation.

The long-time diffusion coefficients Dl have been obtained by fitting to a constant the

numerical results for D(t)
D0

in a time window around t = 5 µs.

Uncertainty of the simulation results due to sampling error was estimated by dividing

the simulations into 5 subsets and treating them as independent ’measurements’.
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S2. BEAD-BEAD AVERAGE SEPARATION AND THE PROBABILITIES OF

THE OPEN AND CLOSED STATES IN THE CASE [S] = 0

In the case of single, isolated enzyme, the probability density P(l) of finding the enzyme

subunits separated by a distance ` is governed by the Boltzmann distribution:

P (l) dl =
l2 exp

(
− U

kBT

)
dl∫∞

0
l2 exp

(
− U

kBT

)
dl
. (S13)

It is convenient to restrict the continuous phase space to a two state model by classifying

enzymes with l ≥ `m = (`o + `c)/2 as open and the remaining ones as closed. Then, the

probabilities po and pc of finding the enzyme in the open and in the closed state, respectively,

are given by

po =

∫∞
`m
l2 exp

(
− U

kBT

)
dl∫∞

0
l2 exp

(
− U

kBT

)
dl
. (S14)

pc =

∫ `m
0
l2 exp

(
− U

kBT

)
dl∫∞

0
l2 exp

(
− U

kBT

)
dl

= 1− po. (S15)

For a single enzyme with κ = 6.8 kBT , `o = 2.5a, and `c = 1.1a we obtained po ≈ 0.83.

In the case of crowded systems, the corresponding P(l) functions are computed from the

BD simulations, specifically from the separation histograms.
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S3. OCCUPIED VOLUMES

We computed volume occupied by a single dumbbell in any state (table S1) as the average

value of the volume V (l):

〈V 〉 =

∫∞
0
V (l) l2 exp

(
− U

kBT

)
dl∫∞

0
l2 exp

(
− U

kBT

)
dl

. (S16)

where (see the main text Fig. 1a for the overlapping geometry)

V (l) =


2× 4

3
πa3, l ≥ 2a ,

4

3
πa3 + lπa2 − 1

12
πl3, l < 2a

. (S17)

TABLE S1. Occupied volumes of single enzymes with the binding potentials Uc and U , corre-

sponding to [S]→∞ and [S] = 0, respectively (eqs. (S16) and (S17)).

potential 〈V 〉 / Vbead

Uc 1.747

U 1.959
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S4. MONTE CARLO SIMULATIONS FOR OCCUPIED AND EXCLUDED

VOLUMES

To compute the occupied and excluded volumes for systems from our BD simulations

for a given tracer (cf. Tables S2 and S3), we used a Monte Carlo method as follows. First,

several snapshots of the BD simulation are selected [12]. Then, the following procedure is

employed to each of the snapshots:

1. The positions of the particles are loaded from the selected BD snapshot;

2. The tracer is thrown into the system at a randomly generated position;

3. Iff the tracer overlaps with any other of the particles in the box, a counter variable n

is incremented by one;

4. The tracer is removed from the system and steps 2-3 are repeated N times;

5. After N such trials, the value n
N

is taken as an estimate of the excluded volume fraction

φtracer
ex .

To compute the average excluded volume for a given system, the above simulations have

been performed with N = 104 and 8 snapshots (at 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.5 µs),

for 5 distinct repeats of the simulation.

Occupied volume was computed in a similar manner, the only difference being that the

insertion attempts use a point particle.
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S5. SCALED PARTICLE THEORY FOR TWO-STATE ENZYMES UNDER

CROWDING

For hard convex particles, the scaled-particle theory predicts that the change ∆F in

the free energy between the two states (denoted as ‘open’ and ‘closed’, respectively) of a

shape-changing object in the presence of crowders is given by [14, 15]

∆F (φocc) = ∆F0 + kBT

3∑
k=1

gk(φocc)

(1− φocc)
k
. (S18a)

Here, ∆F0 denotes the change in the free energy between the same two states in the absence

of crowders, and the dimensionless functions gk are given by

g1(φocc) = ∆H〈A〉+ ∆A〈H〉+ ∆V 〈1〉, (S18b)

g2(φocc) =
1

2

[
∆H2〈A〉2 + 2∆V 〈H〉〈A〉

]
, (S18c)

g3(φocc) =
1

3
∆V 〈H2〉〈A〉2 . (S18d)

∆V , ∆A, ∆H and ∆H2 denote the differences in the volume, surface area, Kihara parameter

(half of the projection of a particle onto any axis, averaged over all orientations of the

particle) and its square (∆H2 = H2
o −H2

c 6= (∆H)2), respectively, of the particle in the open

and closed states. They are independent of φocc; these parameters can be computed, if the

shape of the particle in the two states is known, or — as in the case of experiments with

active enzymes, if the shapes are not a priori known — they represent fitting parameters

for experimental data. The bracketed terms refer to the following weighted sum of the

corresponding observable for crowders (with G as a generic notation for such an observable):

〈G〉 =
1

V
M∑
k=1

NkGk, (S19)

where V is the volume of the system, M is the number of different types of crowders, and Nk

the number of crowders of type k (the total number of crowders being N =
∑M

k=1Nk). (Note

that 〈H2〉 = (1/V)
∑M

k=1NkH
2
k 6= 〈H〉2, while 〈1〉 = N/V , i.e., it gives the number density

of the crowders.) They capture the full dependence of the functions gk on φocc, and they

can be calculated a priori, since in general the number of crowders and their type (shape)

are known.
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To illustrate these ideas, we use the case of a particle with one type of crowders, spherical

beads of radius ac. In this case, eq. (S18) reduces to

∆F = ∆F0 + kBT
3∑

k=1

hk

(
φocc

1− φocc

)k

, (S20a)

where

h1 =
3∆H

ac
+

3∆A

4πa2c
+

3∆V

4πa3c
, (S20b)

h2 =
9∆H2

2a2c
+

9∆V

4πa3c
, (S20c)

and

h3 =
9∆V

4πa3c
. (S20d)

For an enzyme with two-state kinetics, eq. (4) of the main text combined with eq. (S20)(a)

can be used to fit experimental data on the activity of the enzyme in crowded environments

to extract the parameters h1,2,3 and po(0). (Note that, in order to do so, at least four exper-

imental points must be available; obviously, for a robust, reliable fit, in practice much more

many points are required.) Then, from eq. (S20)(b-d) one can interpret these parameters in

terms of microscopic properties (∆V , ∆A, ∆H, ∆H2) of the shape-changes of the enzyme.

If additional information is available about the particle, a fitting procedure as discussed

above can be strongly constrained by additional relations between the fitting parameters.

For example, consider a spherocylindrical particle, of radius a and lengths `o and `c in the

‘open’ and ‘closed’ states, respectively. In this case, eq. (S20)(b-d) further simplify to

h1 =
3∆`

4ac

(
1 +

2a

ac
+
a2

a2c

)
, (S21a)

h2 =
9a∆`

4a2c

(
1 +

a

ac

)
+

9∆`2

32a2c
, (S21b)

and

h3 =
9a2∆`

4a3c
, (S21c)

where ∆` = `o − `c and ∆`2 = `2o − `2c. The number of fitting parameters is now reduced to

two (∆` and ∆`2), consistent with the fact that for this case h1 and h3 differ only through

a constant (and given) proportionality factor.
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A. Application to the fluctuating-dumbbell enzyme

We now discuss the use of the scaled particle theory in the case of a fluctuating-dumbbell

enzyme in order to predict the dependence of the activity on φocc. This can be done by ap-

proximating (in order to satisfy the convex-shape requirement) the shape of the enzyme with

that of a spherocylinder with lengths `o and `c in the open and closed states, respectively.

Since in our simulations we had both spherical crowders and enzymes, the number of

different crowders in eq. (S19) is M = 3 (spherical beads, enzymes in the open states, and

enzymes in the closed states). The shapes of the crowders, as well as that of the enzyme

(spherocylinder particle), being specified, the functions gk in eq. (S18) can be determined

once the number densities of the three types of crowders are provided. Although the number

of enzyme crowders that are in the open and closed states, respectively, is not known a priori,

one can estimate po = No/Ne (Ne = No+Nc is the total number of enzymes) via an iterative

procedure as follows. One starts with ∆F calculated at the initial value of po, taken at no

crowding, that is, po(0). Then, eq. (1) of the main text is used to obtain a new estimate for

po; this is then plugged into eq. (S18) to recalculate ∆F , and so on. (We have checked against

the simulations that this procedure converges and provides consistent approximations for

po.)

The results are shown in Fig. S1 for two cases discussed in the main text, when crowding

is due to spherical particles and enzymes (we recall that in the latter case about 5.2 % of the

volume is occupied by the enzymes; in the former case about 2.5 % of the volume is occupied

by the spherical particles). Clearly, the scaled-particle theory provides a good estimate

of the activity reduction. The deviations from the BD simulations are likely because we

approximated the enzyme as a spherocylinder. For comparison, we also show the SPT results

in the case when crowding is solely due to spherical particles. These results overestimate the

activity reduction only slightly when the majority of the crowders are spherical particles.

Larger deviations are observed when crowding is mainly due to the enzymes, which is likely

because of inaccuracies in determining the occupied volume fractions.
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FIG. S1. Brownian dynamics (BD) simulations vs. scaled-particle theory (SPT). (a)

Results for systems where crowding is due to spherical particles. All simulation systems contained

100 enzymes to gather enough statistics, which amounts to about 5.2 % in terms of the occupied

volume fraction. In the SPT, the enzymes are approximated as spherocylinders. The black dash

line shows the results when the crowding is solely due to spherical particles. (b) The same as (a)

but for crowding created by enzymes. All these systems contained 100 spherical particles, which

is about 2.5 % in terms of the occupied volume fraction.
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S6. SUPPLEMENTARY FIGURES AND TABLES
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FIG. S2. Mean-square displacement for a single enzyme with and without a substrate.

The MSDs result from 4000 independent simulations. The diffusion coefficients have been extracted

by fitting the MSD(t) data with the linear function f(t) = 6Dt. The resulting diffusion coefficients

are D0 ≈ 153 nm2 µs−1 and D
(s)
0 ≈ 180 nm2 µs−1 for the systems with [S] = 0 and [S] → ∞,

respectively.
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FIG. S3. Differences in enzyme conformation and activity in systems with different

composition. (a) Probability density P(`) of finding the enzyme subunits separated by a distance

` in systems composed of 100 enzymes and 492 passive tracers (sphere crowding, blue dashed line),

and 300 enzymes and 100 tracers (enzyme crowding, red dashed line). The occupied volume

fraction φocc is the same for the two systems. (b) Free energy of opening ∆F as a function of the

occupied volume fraction φocc. The squares (diamonds) denote the values of ∆F obtained from the

BD simulations according to eq. (??) (main text) for systems with enzyme (sphere) crowding. (c)

Reduction of the enzyme’s catalytic activity, k/k0, as a function of the occupied volume fraction

φocc. The pentagons (triangles) denote the values obtained from the BD simulations (eq. (3)) for

systems with enzyme (sphere) crowding.
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FIG. S4. Excluded vs occupied volume fractions for the simulated mixtures. The volume

fractions have been computed with Monte-Carlo approach (Section S3). For the values see Tables

S2 and S3).
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TABLE S2. Occupied (φocc) and excluded (φtracerex ) volume fractions from Monte Carlo tracer

insertion simulations for sphere crowding. The excluded volumes are shown for spherical crowders

(φsphereex ) and for enzymes in the open and closed states (φopenex and φclosedex , resepectively).

Sphere crowding

Nenz Ntr φocc (%) φsphereex (%) φclosedex (%) φopenex (%)

[S] = 0

100 100 7.92± 0.24 49.08± 0.66 61.27± 0.88 70.68± 0.67

100 296 13.19± 0.33 72.36± 0.66 84.16± 0.45 90.70± 0.50

100 492 18.51± 0.34 86.56± 0.40 94.42± 0.37 97.73± 0.15

[S]→∞

100 100 7.34± 0.29 44.35± 0.56 56.06± 0.45 65.72± 0.89

100 296 12.59± 0.41 69.32± 0.63 81.32± 0.46 88.71± 0.45

100 492 17.68± 0.34 84.73± 0.67 93.66± 0.68 97.16± 0.46

TABLE S3. Occupied (φocc) and excluded (φtracerex ) volume fractions from Monte Carlo tracer

insertion simulations for enzyme crowding. The excluded volumes are shown for spherical crowders

(φsphereex ) and for enzymes in the open and closed states (φopenex and φclosedex , resepectively).

Enzyme crowding

Nenz Ntr φocc (%) φsphereex (%) φclosedex (%) φopenex (%)

0 100 2.68 19.98± 0.45 27.10± 0.44 33.63± 0.66

[S] = 0

100 100 7.92± 0.24 49.08± 0.66 61.27± 0.88 70.68± 0.67

200 100 13.15± 0.33 70.95± 0.85 82.84± 0.80 89.42± 0.50

300 100 18.20± 0.44 84.94± 0.55 93.16± 0.42 96.86± 0.35

[S]→∞

100 100 7.34± 0.29 44.35± 0.56 56.06± 0.45 65.72± 0.89

200 100 12.06± 0.30 63.69± 0.57 75.75± 1.10 84.44± 0.68

300 100 16.81± 0.34 78.19± 0.54 88.74± 0.40 94.09± 0.26
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