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Background 

The following section provides some background on the existing empirical and theoretical equations for 
predicting the self-diffusion in pure solutions and highlight the parameters used in each. For a more in-
depth discussion on the history of predicting self-diffusion see the review published by Silva and Liu on 
hard sphere models and the comprehensive review by Suarez-Iglesias.1, 2 

J.H. Dymond (1974)3 

Dymond presents the following equation for prediction of self-diffusion in liquids. The equation builds on 
and corrects the modified Enskog theory for hard spheres:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐵𝐵√𝑇𝑇(𝑉𝑉 − 𝑉𝑉𝐷𝐷)      (S1) 

Here, B and VD are adjustable parameters that are specific to each compound. Dymond proposes that the 
diffusion is dependent on the temperature of the system (𝑇𝑇) and the molar volume (𝑉𝑉). The molar mass 
is also wrapped up in the constant B. Dymond shows good agreement when predicting carbon 
tetrachloride and methane diffusion, but the model struggled in predicting liquid argon diffusion. Silva 
and Liu compared the performance of Dymond’s model to 2471 experimental diffusion constants and 
achieved and overall AAD of 99.66%. 

Lee and Thodos (1988)4 

Lee and Thodos present the following correlation for predicting the self-diffusion at all state conditions:  

𝜏𝜏
𝐷𝐷𝐿𝐿𝐿𝐿
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛿𝛿𝑡𝑡

105 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝐵𝐵1𝑒𝑒𝐷𝐷3 + 𝐵𝐵2𝑒𝑒𝐷𝐷4) − 1     (S2) 

𝛿𝛿𝑡𝑡 = 𝑀𝑀1/2𝑇𝑇𝑡𝑡
−1/2𝑉𝑉𝑟𝑟𝑡𝑡

−2/3     (S3) 

𝑒𝑒 = 𝜔𝜔

𝜏𝜏𝐸𝐸1𝜔𝜔𝐸𝐸2
               (S4) 

Here, 𝛿𝛿𝑡𝑡  is a self-diffusivity parameter, 𝑇𝑇𝑡𝑡 is the triple-point temperature, 𝑉𝑉𝑟𝑟𝑡𝑡 is the liquid molar volume at 
the triple point, 𝑀𝑀 is the molar mass, 𝜏𝜏 = 𝑇𝑇/𝑇𝑇𝑡𝑡 is the normalized temperature, 𝑒𝑒 is a density-temperature 
variable, 𝜔𝜔 = 𝜌𝜌/𝜌𝜌𝑟𝑟𝑡𝑡 is a normalized density, 𝜌𝜌𝑟𝑟𝑡𝑡 is the liquid density at the triple point, 𝐸𝐸1 and 𝐸𝐸2 are 
constants found to be 0.09 and 3.1, respectively, and 𝐵𝐵1, 𝐵𝐵2, 𝐵𝐵3, and 𝐵𝐵4 are parameters specific to each 
compound. The equation proposed by Lee and Thodos is dependent on the temperature, molar volume 
and density at the triple point along with the molar mass and system temperature. Lee and Thodos tested 
and fit the model on 58 molecules and 975 experimental diffusion values. The equation was also tested 
by Silva and Liu against their 2471 diffusion values and achieved an overall AAD of 10.13%. 
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Salim and Trebble (1995)5 

Salim and Trebble extended the Lennard Jones (LJ) diffusion predicitons to real fluids by considering each 
molecule as a chain of LJ particles. This introduces a new parameter (𝑁𝑁), which is specific to each molecule. 
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Here, 𝐷𝐷0,𝐷𝐷𝐵𝐵𝐻𝐻 is the self-diffusion at ideal gas conditions for a hard sphere chain fluid, 𝜎𝜎𝐷𝐷𝐵𝐵′  is the effective 
hard sphere diameter (EHSD) using the Boltzmann criteria and Speedy form,6 𝜀𝜀𝐿𝐿𝐿𝐿 is the Lennard Jones 
interaction energy, 𝜎𝜎𝐿𝐿𝐿𝐿′  is the Lennard Jones diameter, 𝑘𝑘𝐷𝐷 is the Boltzmann constant, 𝑁𝑁 is the chain 
parameter describing the number of Lennard Jones molecules chained together, 𝑇𝑇∗ = 𝑘𝑘𝐷𝐷𝑇𝑇/𝜀𝜀𝐿𝐿𝐿𝐿 is the 
reduced temperature, 𝜌𝜌0 is the density at ideal gas conditions, 𝜎𝜎′ is the ideal gas diameter and 𝑚𝑚′ is the 
mass. By extending the Lennard Jones pair-potential to real fluids, Salim and Trebble propose that the 
diffusion is dependent on the inter-atomic interaction energies and the effective diameters of the 
molecules. The use of the chain parameter also leads to a dependence on the length of each molecule 
along with the usual dependence on temperature and density. Silva and Liu do not report a global AAD 
for this model, but Salim and Trebble report the AAD for 13 alkanes up to 154 carbons with the largest 
being 13.32%. 

Ruckenstein and Liu (1997)7  

Ruckenstein and Liu extend the Lennard Jones diffusion to real fluids by treating the molecules as Rough 
Lennard Jones (RLJ) particles. This involves multiplying the Lennard Jones diffusion constant by a new 
parameter that accounts for frictional losses during collisions (𝐴𝐴𝐷𝐷). 
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𝐹𝐹(𝜌𝜌∗) = 1 + 0.94605𝜌𝜌∗1.5 + 1.4022𝜌𝜌∗3 + 5.6898𝜌𝜌∗5 + 2.6626𝜌𝜌∗7  (S10) 

𝐴𝐴𝐷𝐷(𝜔𝜔) = 0.9673− 0.2527𝜔𝜔 − 0.70𝜔𝜔2    (S11) 

𝑔𝑔(𝜎𝜎) = 1−0.5𝜂𝜂
(1−𝜂𝜂)3           (S12) 

Here, 𝜔𝜔 is the acentric factor describing how much the molecule deviates from a hard sphere, 𝜎𝜎𝐷𝐷𝐵𝐵𝐷𝐷 is the 
effective hard sphere diameter using the Boltzmann criteria and Amotz-Herschbach form,8 𝑔𝑔(𝜎𝜎) is the 
pair distribution function, and 𝜂𝜂 = 1

6
𝜋𝜋𝜌𝜌∗ is the packing fraction.  Silva and Liu report an overall AAD of 

7.33% over 1,822 experimental diffusion constants. 

 



Liu, Silva, and Macedo (1998a, 1998b)9, 10 

Liu et al. extends the Lennard Jones and Square-Well (SW) pair-potential to real fluids. Expressions for LJ 
and SW diffusion are developed by fitting molecular dynamics (MD) data. The extension into real fluids is 
accomplished by using the effective hard sphere diameter method. The Lennard Jones expression is 
shown below: 
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Here, 𝜎𝜎𝐷𝐷𝐿𝐿𝐵𝐵𝑀𝑀 is the effective hard sphere diameter using the Boltzmann criteria. Liu, Silva and Macedo 
(LSM) optimized the parameters found by Ben-Amotz and Herschbach to form their own expression for 
the EHSD. The self-diffusion is dependent on the two LJ parameters, 𝜀𝜀𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿, along with the 
temperature and density of the system. The model was tested against 2,471 experimental diffusion values 
from 40 compounds and showed and overall AAD of 8.53%. The model struggled with hydrogen-bonding 
substances, so the authors developed an improved model, published later the same year (ref. 10): 
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The updated model has 4 adjustable parameters for each molecule: 𝐴𝐴𝐷𝐷, a roughness factor, 𝐸𝐸𝐷𝐷, an energy 
parameter to replace 𝜀𝜀𝐿𝐿𝐿𝐿, 𝑇𝑇𝐷𝐷, which allows optimization of the temperature-dependence in the effective 
diameter, and 𝜎𝜎. The authors also define a new EHSD, 𝜎𝜎𝐿𝐿𝐿𝐿4, using the new parameters. The model was 
tested against the same 2,471 points and achieved an overall AAD of 4.45%, improving the predictions for 
the hydrogen-bonding compounds. 

Yu and Gao (2000)11 

Yu and Gao utilize the LJ chain method in combination with an effective hard sphere diameter, similar to 
Salim and Treble. The LJ chain method introduces the parameter N, which represents the number of LJ 
particles in the chain:  
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The model is heavily dependent on the density and temperature of the system and is supplemented by N, 
the effective length of the compounds. Silva and Liu compare the model to 1,081 experimental diffusion 
values and achieve and overall AAD of 4.72%. 

Zhu, Lu, Zhou, Wang, and Shi (2002)12 

Zhu et. al. initially fit an empirical equation to Lennard Jones molecular dynamics data. That equation was 
then extended to real fluids by using effective diameter and energy terms: 
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Here, the constants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4, and 𝑃𝑃5 were fit on the MD data while the constants 𝛼𝛼𝐵𝐵, 𝛽𝛽𝐵𝐵, 𝛾𝛾𝐵𝐵, 
𝛼𝛼𝐷𝐷, 𝛽𝛽𝐷𝐷, and 𝛾𝛾𝐷𝐷 were fit on the experimental diffusion data (see reference for values). 𝑉𝑉𝑐𝑐𝑚𝑚 is the critical 

molar volume, , 𝑇𝑇𝑐𝑐 is the critical temperature,  𝑇𝑇𝑐𝑐∗ =  𝑇𝑇𝑐𝑐
𝑘𝑘𝐵𝐵
𝜀𝜀𝐿𝐿𝐿𝐿

 is the unitless critical temperature, 𝑇𝑇𝑟𝑟 = 𝑇𝑇
𝑇𝑇𝑐𝑐

 is 

the reduced temperature, 𝜌𝜌𝑟𝑟 = 𝜌𝜌
𝜌𝜌𝑐𝑐

 is the reduced density, and 𝑁𝑁𝐵𝐵 is Avogadro’s number. Rather than use 

the established expressions for the EHSD, Zhu et al. elected to predict the LJ parameters using the critical 
volume, temperature, and density. Zhu et al. tested the predictions of the model against 1,226 
experimental diffusion values from 17 substances and achieve and overall AAD of 18.51%. 

Summary 

Each of these models suggests that certain parameters would be important input features in the 
development of ANNs. The temperature and density of the system are two of the more important 
parameters to include in a model as they appear in all models mentioned here. Many of the more recent 
empirical models utilize an effective hard sphere diameter to represent a real molecule rather than the 
traditional hard sphere representation. The LJ chain models also incorporate an effective length. These 
would suggest that the size/shape of the molecule would be a valuable feature for model development. 
On a similar note, Ruckenstein and Liu introduce the acentric factor in their model, which also aims to 
describe the difference between the real molecule and a hard sphere. Models proposed by Lee and 
Thodos and Zhu et al. were both developed for multiple phases and both use unique parameters. Lee and 
Thodos use the triple-point properties while Zhu et al. use the critical point properties. The fact that the 
Zhu model has shown good performance over liquid, gas, and supercritical states suggests that the critical 
properties are likely valuable in the prediction of self-diffusion and should be included as input features 
in ANN model development. Molar mass frequently appears and is likely necessary for improved ANN self-
diffusion models. Many of the parameters mentioned were incorporated as input features in the ANN 
models in some form. 

Computation Time and Hardware 



The ANN models were developed on an AMD Ryzen 2600 6-core processor. It takes 5.3 seconds to train 
and test the B-ANN model, 1 minute and 11 seconds to train and test the log-ANN model, 32.8 seconds to 
train and test the L-ANN, 5.6 seconds to train and test the S-ANN, 3.29 seconds to train and test the G-
ANN, and 40 seconds to run the combined ANN with all three phase-specific ANNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S2. Parameters for the models developed on the dataset with density (DB1, 6,625 points). 

Table S1. Performance of log-ANN with different numbers of principal components using DB1.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. Performance metrics for the B-ANN and log-ANN when density is present (or not) in the database. DB1, which 
contains density, contains 6,625 points, while DB2 contains 10,569 points.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Density plotted versus the log10 of self-diffusion. 

Figure S2. Individual (blue bars) and cumulative explained variance (dotted line) for principal component input features in 
database DB1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Distribution plots for a) the raw diffusion values and b) the log transformed diffusion values using DB1. 

Figure S4. Correlation plot for B-ANN diffusion predictions with the log10 of diffusion taken. Compare to Figure 2 in 
the main text. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Relative error for self-diffusion predictions using the a) L-ANN, b) S-ANN, c) G-ANN. 

Figure S5. Correlation plot for the log-ANN diffusion predictions, with target values returned the 
raw scale. The inset has the same units as the main figure. Compare to Figure 1 in main text. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Correlation plot for two empirical models of self-diffusion: a) Liu et al. tested against only liquid values in DB1 and b) 
Zhu et al. tested against all data in DB1. 

Figure S7. Correlation plot for input features used in DB1. 
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