Supporting Information

Catalyst-Electrolyte Interface Chemistry for Electrochemical CO₂ Reduction

Young Jin Sa,^{ab⊥} Chan Woo Lee,^{c⊥} Si Young Lee,^{ad⊥} Jonggeol Na,^e Ung Lee* ^{adf} and Yun

Jeong Hwang*adg

^a Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

^b Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.

^c Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea.

^d Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.

^e Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea.

^f Green School, Korea University, Seoul 02841, Republic of Korea.

^g Department of Chemical and Biomolecular Engineering and Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea.

 $^{\perp}$ These authors contributed to equally to this work

*Corresponding author Email: ulee@kist.re.kr (U.L.) and yjhwang@kist.re.kr (Y.J.H.)

Table S1 Summary on the title, contents, and theme of previous review articles for electrochemical CO_2 reduction. The review articles can be categorized based on main focus: catalyst, electrolyte, cell design & process, mechanism, stability and comprehensive. The number of articles for each group corresponds to 63, 2, 13, 11, 1 and 10 in order.

Ref.	Title	Contents	Theme
This work	Catalyst-Electrolyte Interface Chemistry for Electrochemical CO ₂ Reduction	 Introduction Technoeconomic perspectives of electrochemical CO₂ reduction Fundamentals of electrochemical CO₂ reduction Design of interfaces between catalyst and surface modulator Understanding catalyst-electrolyte interfaces 	Control of organic modulators, electrolyte ions, electrode structures and the three- phase boundary at the catalyst-electrolyte interface
1	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials	 6. Conclusions and perspectives Introduction 2. Working principles of electrochemical CO₂ reduction Electrolyzer configurations Electrolyzer selection Electrolyte selection pH effects 7. Pressure and temperature effects Summary and outlook 	Electrolyzer configuration, electrode structure, electrolyte selection, pH control, and the electrolyzer's operating pressure and temperature
2	A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO ₂ to value-added chemicals and fuel	 Introduction Active Sites in Metal-Based Catalysts Active Sites in Metal-Carbon Catalysts Active Sites in Carbon-Based Catalysts Advanced Tools for Active Site Determination Machine Learning in CO₂RR Summary and Outlook 	Design strategies of active sites
3	Electrolytic cell design for electrochemical CO ₂ reduction	 Introduction Electrochemical cell for CO₂RR Summary and outlook 	Electrolytic cell design
4	An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO ₂ to CO	 I. Introduction Ag-based nanostructured electrode materials Outlook on surface engineering 	Material factors in Ag- based electrodes
5	Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers	 Introduction Mechanism of electrocatalytic reduction of CO₂ MOFs-based materials for electrochemical reduction of CO₂ Conclusions and outlooks 	MOF-based electrocatalysts
6	Pushing the activity of CO ₂ electroreduction by system engineering	1. Introduction 2. Catalytic reactor design 3. Renewable energy-driven systems 4. System optimization 5. Summary and outlook	Reactor architectures and system engineering
7	Strategies for designing nanoparticles for electro- and photocatalytic CO ₂ reduction	 Introduction Designer Metal Nanoparticles for Electrocatalytic CO₂RR Designer Semiconductor Nanoparticles for Photocatalytic CO₂RR Conclusion and Perspectives 	Strategy of designing nanoparticles
8	Rational design of Ag-based catalysts for the electrochemical CO ₂ reduction to CO: A review	 Introduction Fundamentals of ECR Advances in silver-based CO₂-to-CO electrocatalysts 	Material factors in Ag- based electrodes

		4. Summary and Outlook	
9	Electrochemical conversion of carbon dioxide to high value chemicals using gas-diffusion electrodes	 Introduction Electrochemical CO₂ reduction Figures of merit for electrochemical CO₂ reduction Scaling up of electrochemical CO₂ reduction processes using gas diffusion electrodes GDE systems for various CO₂ reduction products Outlook for future research 	gas diffusion electrode and electrolyzers
10	Modelling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions	1. Introduction 2. Methods 3. Applications: Modelling chemical reactions on metal surfaces 4. More realistic conditions in chemical reactions 5. Remaining challenges 6. Conclusions	Modelling electrocatalytic reduction of CO ₂
11	Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO_2	 Introduction Size and morphology effect in ECR Crystal facet control Defect engineering Interface and surface modification Oxide derivation Conclusion and outlook 	Design of nanostructured inorganic catalysts
12	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO	1. Introduction 2. Metal-free heteroatom-doped carbon materials 3. Transition metal heteroatom codoped carbon materials 4. Carbon-based hybrid materials 5. Summary and outlook	Carbon-based non- precious metal electrocatalysts
13	Interfacial effects in supported catalysts for electrocatalysis	 Introduction Strategies to improve the formation of interfacial effects Application of interfacial effects in electrocatalysis Conclusion and Perspective 	Interfacial effects in supported catalysts
14	Electrolyte effects on the electrochemical reduction of CO ₂	 Introduction CO₂ reduction in aqueous electrolytes CO₂ reduction in non-aqueous electrolytes CO₂ reduction in electrolyte mixtures Summary and outlook 	Electrolyte effects
15	Surface strategies for catalytic CO ₂ reduction: from two- dimensional materials to nanoclusters to single atoms	 Introduction Material synthesis and surface strategies for CO₂ reduction Challenges and opportunities 	Nano-to-atomic surfac strategies for catalysts
16	Carbon-based catalysts for electrochemical CO ₂ reduction	 Introduction Heteroatoms modification Transition metal- nitrogen- carbon Structure Combination with functional groups Conclusions and outlook 	Carbon-based catalyst and synthetic strategy
17	Review of two-dimensional materials for electrochemical CO_2 reduction from a theoretical perspective	 Introduction Possible reaction pathways of electrochemical of CO₂ reduction Discovery of 2D catalysts for electrochemical CO₂ reduction 2D transition metal dichalcogenides 2D structures of group-VA elements 2D metal-organic materials Transition-metal oxides Transition-metal carbides (MXENEs) Summary and outlook 	2D materials for CO ₂ reduction

	electrocatalytic reactions provided by SERS	 Oxygen electrochemistry Electrochemistry of carbon monoxide and carbon dioxide Formic acid oxidation Summary 	Raman spectroscopy fo CO ₂ reduction
19	Electrode materials engineering in electrocatalytic CO ₂ reduction: Energy input and conversion efficiency	 S. Summary 1. Introduction 2. Fundamentals 3. Electrode materials for ECR system 4. Conclusions and perspectives 	Anodic and cathodic materials in the photo- anode-assisted electrochemical CO ₂ reduction
20	Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction	 Introduction Synthesis of core/shell materials A brief introduction of CO₂RR Advanced regulations of core/shell nanomaterials for enhanced CO₂ electrocatalytic activity Conclusions and perspectives 	Electrocatalysts with a core/shell structure
21	Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO ₂ conversion and valorisation	1. Introduction 2. N-doped carbon materials in CO2 valorisation 3. Concluding remarks	Nitrogen doped metal free carbon catalysts
22	Solvents and supporting electrolytes in the electrocatalytic reduction of CO ₂	 Introduction Aqueous electrocatalytic CO₂ reduction Non-aqueous electrocatalytic CO₂ reduction 	The effects of supporting electrolyte and solvents
23	In-situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO ₂ : Theory, practice and challenges	 Introduction Fundamental aspects of infrared spectroscopy at electrode-electrolyte interfaces Experimental details of infrared spectroscopy at electrode-electrolyte interfaces Applications in the electrocatalytic reduction of CO₂ 	In-situ IR spectroscop
24	Recent advances in metal- organic frameworks for photo- /electrocatalytic CO ₂ reduction	5. Challenges and opportunities 1. Introduction 2. Photocatalytic CO ₂ reduction in MOFs 3. Electrocatalytic CO ₂ reduction in MOFs 4. Summary and Prospects	MOF-based CO ₂ reduction
25	Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review	 Introduction Engineering physical structure of CMs Engineering electronic structure of CMs Engineering CMs for CO₂RR Conclusions and perspectives 	Design strategies of carbon-based metal-fro materials
26	Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide	 1. Introduction 2. Electrocatalysts for CO₂RR: from nanoparticles (NPs) to single atoms 3. Electrochemical CO₂ conversion on single- atom catalysts 4. Understanding the origin of CO₂RR activity and reaction mechanisms 5. Challenges and opportunities 	Single-atom catalysts for CO ₂ reduction
27	Recent advances in intensified ethylene production—A review	 Introduction Alternative approaches for ethylene production Challenges and opportunities for intensified ethylene production Summary 	Processes for intensific ethylene production
28	Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels	 Introduction Initial activation of CO2 Carbon-carbon bond formation Reaction and process conditions Electrode morphology and (sub)surface atoms In situ spectroscopic investigation of CO2 reduction 	Mechanistic understandings of CO reduction reaction

		7. Computational approaches for CO ₂ reduction 8. Future directions	
29	Electrochemical CO ₂ reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design	 Introduction Techno-economic analysis of CO₂RR Computational insight into the reaction mechanisms Catalysts for CO₂ electroreduction System design for CO₂ electroreduction Conclusions 	Comprehensive review including techno- economic analysis, computational understandings, catalysts materials and system design
30	Engineering metal-organic frameworks for the electrochemical reduction of CO ₂ : A minireview	 Introduction Main challenges for CO₂ER MOF-related catalysts for CO₂ER Concluding remarks 	Advantages and limitation of MOF- based catalysts in CO ₂ reduction
31	Structure-sensitivity and electrolyte effects in CO ₂ electroreduction: From model studies to applications	 Introduction Structure sensitivity in CO₂ reduction Tuning the selectivity by engineering the electrolyte interface Challenges and future directions 	The effects of surface structure and electrolyte
32	Current achievements and the future direction of electrochemical CO ₂ reduction: A short review	 Introduction Commercial plants and projects An economic feasibility of produced chemicals Liquid-phase electrochemical CO₂ reduction Evolution into the gas-phase CO₂ electrolysis Conclusion 	CO ₂ electrolysis systems and their industrial feasibility
33	Progress and perspectives of electrochemical CO ₂ reduction on copper in aqueous electrolyte	 Introduction Considerations for conducting and comparing electrochemical CO₂ reduction experiments Experimental probes of CO₂ reduction mechanisms Theoretical studies on copper Electrochemical CO₂ reduction pathways on Cu Nanostructured Cu Copper bimetallics Conclusions and future outlook 	Various factors and reaction mechanisms affecting Cu-based CO reduction
34	CO ₂ conversion by membrane reactors	 Introduction Low temperature (≤100 °C) methods for CO₂ conversion High temperature (>100 °C) membrane reactors for CO₂ conversion 4. Conclusions 	Electrochemical, photochemical, thermochemical membrane reactors fo CO_2 reduction
35	CO ₂ reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions	 Introduction Effect of cell configuration and reaction rate on CO₂ reduction environments Impact of high current densities on CO₂ reduction catalyst testing Impact of high current densities on system design	The effects of cell configuration and reaction rate on electrocatalytic system
36	Rational design of transition metal-based materials for highly efficient electrocatalysis	 Introduction Creating more active sites Improving the utilization of active sites Modulation of electronic configuration Control lattice facets Conclusion and perspective 	Strategies to design metal-based electrocatalysts
37	Carbon-supported single atom catalysts for electrochemical energy conversion and storage	1. Introduction 2. Sample preparation 3. Electrocatalytic performance 4. Summaries and perspectives	Synthetic strategies and electrocatalytic performances of single atom catalysts
	Surface and interface engineering in copper-based	 Introduction Fundamental understanding of the CO₂RR Improving selectivity by interfacial 	The fundamental role o the secondary metal in

	selective CO ₂ electroreduction	engineering 4. Theoretical prediction 5. General trends	electrocatalysts
39	Cu-based nanocatalysts for electrochemical reduction of CO ₂	1. Introduction 2. Electrochemical reduction of CO ₂ 3. Cu-based nanocatalysts for electrochemical reduction of CO ₂ 4. Conclusions	Design strategies of Cu based electrocatalysts
40	Recent advances in the nanoengineering of electrocatalysts for CO ₂ reduction	 Introduction Bulk metallic catalysts for the ECR Nanoengineering of catalysts for the ECR Summary and outlook 	Nanoengineering strategies of electrocatalysts
41	Electrolytic CO ₂ reduction in a flow cell	 Introduction Flow-cell architectures Gas phase CO₂ electrolysis flow cells CO₂ flow cell optimization Conclusions and perspectives 	System-level strategies of membrane-based flow cells and microfluidic reactors
42	Electrocatalytic alloys for CO ₂ reduction	 Introduction CO₂ → CO with electrocatalytic alloys CO₂ → formate with electrocatalytic alloys CO₂ → C₂ with electrocatalytic alloys Summary and perspective 	Summary on various reported alloys
43	Progress and perspective of electrocatalytic CO ₂ reduction for renewable carbonaceous fuels and chemicals	 Introduction Electrocatalysts for electrocatalytic CO₂ reduction Product selectivity in electrocatalytic CO₂ reduction Challenges and perspectives 	Metal–organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials for CO ₂ reduction
44	Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts	 Introduction Effects of pH and electrolyte on the performance and selectivity of CO₂ reduction on oxide catalysts Analysis of the performance and mechanisms of oxide-derived catalysts Conclusions 	The effect of oxygen, surface morphologies, and local pH gradients on the catalysis of CO ₂ reduction
45	Tuning of CO ₂ reduction selectivity on metal electrocatalysts	 Introduction Option of electrolytes Design of electrocatalysts Conclusion and perspective 	The rational selection of electrolytes and design of electrocatalysts
46	Metal-free carbon materials for CO ₂ electrochemical reduction	 Introduction Mechanics of the CO₂RR on metal-free carbon materials Metal-free carbon electrocatalysts for the CO₂RR Conclusions and outlook 	Carbon materials with heteroatom doping as metal-free catalysts
47	CO ₂ reduction: From the electrochemical to photochemical approach	 Introduction Fundamentals of electrocatalytic and photocatalytic CO₂ reduction Electrocatalytic materials for CO₂ reduction Photocatalytic materials for CO₂ reduction Conclusion and perspectives 	Electrocatalysts and photocatalysts for CO ₂ reduction
48	Fundamentals and challenges of electrochemical CO ₂ reduction using two-dimensional materials	 Introduction A perspective of electrochemical CO₂ reduction 2D nanosheet catalysis of CO₂ electroreduction Strategies for improving CO₂ electrocatalytic activity of 2D nanosheets Summary and outlook 	Strategies for tuning catalytic activities of 21 materials
_49	Nanostructured materials for heterogeneous electrocatalytic	1. Introduction2. Crucial parameters for CO2 electroreduction tests	Material factors determining the

	reaction mechanisms	 Reaction setup for CO₂ electroreduction Reaction mechanism and pathways Summary and perspectives 	electroreduction
50	Continuous-flow electroreduction of carbon dioxide	 Summary and perspectives Introduction Reactor designs Materials Operation How to benchmark a CO₂ electrolyzer correctly? Photoelectrochemical reduction of CO₂ in continuous-flow Summary and outlook 	The effects of cell design, employed materials and operational conditions
51	Recent progress on bismuth- based nanomaterials for electrocatalytic carbon dioxide reduction	 Introduction Fundamentals for electrocatalytic CO₂RR Various Bi-based nanomaterials for electrocatalytic CO₂RR Summary and outlook 	Bi-based electrocatalytic materials
52	Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO ₂ reduction	 Introduction Measurement system and evaluation parameters for ECR Reaction mechanism Advanced characterization techniques for verifying structural information at atomic scale Modifying the nanostructured electrocatalysts at atomic scale toward ECR Summary and outlook 	Design strategies of nanostructured electrocatalysts at the atomic level
53	Mechanistic understanding of the electrocatalytic CO ₂ reduction reaction - New developments based on advanced instrumental techniques	 Introduction Reaction pathways Commonly used theoretical methods for mechanistic investigations Advanced instrumental techniques for mechanistic investigations Conclusions and outlook 	Instrumental techniques for the mechanistic study of the electrochemical CO ₂ reduction
54	In-situ spectroscopic techniques as critical evaluation tools for electrochemical carbon dioxide reduction: A mini review	 Introduction Reaction mechanism of CO₂RR In-situ techniques for electrochemical CO₂ reduction Summary and outlook 	Electrochemical and non-electrochemical techniques as critical evaluation tools for electrocatalysts
55	Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction	 Introduction CO₂ reduction pathways Heterostructures in electrocatalytic CO₂ reduction Heterostructures in photocatalytic CO₂ reduction Mechanisms of photocatalysis: Type II, Z- Scheme, p-n heterojunctions Conclusions and outlook 	Heterostructured catalysts pertaining to electrocatalytic and photocatalytic carbon dioxide reduction
56	Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts	 Introduction Research progress Conclusions and perspectives 	The design of effective catalysts with lower overpotential, high FE and product selectivity
57	Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction	 Introduction Metal-nitrogen containing macrocyclic complexes Metal organic frameworks (MOFs) Carbon-based metal-nitrogen materials Reaction parameters and proposed mechanisms Conclusion and outlooks 	M–N _x sites-containing transition metal- centered macrocyclic complexes, metal organic frameworks, and M–N _x -doped carbon materials
<u>-50</u>	Metal-nitrogen-carbon electrocatalysts for CO ₂	 CO₂ valorization and syngas generation Metal-nitrogen-carbon electrocatalysts for syngas generation, a selectivity and economical perspective 	M-N-C electrocatalysts

		 The active sites of metal-nitrogen-carbon electrocatalysts for CO₂RR Toward syngas generation at an industrial scale 5. Summary and outlook 	
59	An overview of Cu-based heterogeneous electrocatalysts for CO ₂ reduction	 Introduction A note for conducting EC CO₂ reduction Significant progress in the study of Cu-based heterogeneous for EC CO₂ reduction A brief review for Cu-based heterogeneous catalysts for EC CO₂ reduction Electrolyte effect on CO₂ reduction with Cu- based heterogeneous electrocatalysts EC/PEC CO₂ reduction and H₂O oxidation as an overall reaction system for Cu-based electrocatalysts Summary and outlook 	Cu-based heterogeneous electrocatalysts and electrolyte effects
60	Electrochemical CO ₂ reduction: from nanoclusters to single atom catalysts	 Introduction Fundamentals of electrochemical CO₂ reduction ECR applications of NCs catalysts ECR applications of SACs Summary and perspectives 	Electrocatalytic properties of nanoclusters and single atom catalysts
61	Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO ₂ utilization	1. Introduction 2. Direct electrochemical 3. Non-thermal plasma 4. Direct bioelectrochemical 5. Indirect bioelectrochemical 6. Indirect thermochemical 7. Summary and cross-comparison of CO ₂ R pathways 8. General considerations for CO ₂ R 9. Evaluation of CO ₂ R products 10. Conclusions	Technical barriers and economic viability of electrochemical, thermocatalytic and biological CO ₂ utilization
62	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts	 Introduction Fundamentals of heterogeneous molecular catalysts for CO₂ reduction Non-covalent immobilization technique Covalent immobilization technique Periodic immobilization technique The stability of heterogeneous molecular catalysts The influence of catalysts' utilization on the CO₂ conversion The influence of the supports on the CO₂ conversion Designing suitable catalysts for CO₂ conversion Conclusions and perspectives 	Methods for heterogeneous immobilization of homogeneous molecular catalysts for CO_2 reduction
63	Electrochemical CO ₂ reduction to CO catalyzed by 2D nanostructures	1. Introduction 2. Fundamentals of electrochemical CO2 reduction 3. 2D electrocatalysts 4. Conclusions	Two-dimensional graphene and transition metal chalcogenides for CO ₂ reduction
64	Electrochemical CO ₂ reduction on nanostructured metal electrodes: fact or defect?	 Introduction Onset potential Selectivity and stability Activity and current density Mass transport effects Conclusions 	The effects of active surface area and thickness of the catalytic layer on activity, selectivity, stability and mass transfer
65	Strategies in catalysts and electrolyzer design for	 Introduction Multicarbon hydrocarbons Multicarbon oxygenates 	Electrocatalysts, electrode/reactor design and corresponding

	toward C ₂₊ products	4. Design of the electroreduction cell 5. Summary and outlook	mechanisms for C-C coupling
66	Recent progress in self- supported catalysts for CO ₂ electrochemical reduction	 Introduction Self-supported catalysts for electrochemical CO₂ reduction Organically doped metal electrocatalysts Nanostructured materials on metal foils Metal nanoarrays on conductive substrate Heteroatom-doped carbon materials Conclusions 	Synthesis methods, chemical composition nanostructures, and catalytic efficiencies of self-supported catalys
67	Mechanistic understanding of CO ₂ reduction reaction (CO ₂ RR) toward multicarbon products by heterogeneous copper-based catalysts	 Introduction CO₂RR and CORR: DFT insights Summary and perspectives 	Mechanistic reaction pathways for multicarbon products
68	Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO ₂	 Introduction Recent durability and stability studies of cathodes for CO₂RR Failure modes of CO₂ electrolyzer components CO₂RR durability and degradation characterization protocols Summary and outlook 	Reported durability studies and degradatio mechanisms
69	CO ₂ reduction: From homogeneous to heterogeneous electrocatalysis	 Introduction Homogeneous catalysis Surface catalysis Surface nanocatalysis Conclusions and outlook 	Homogeneous and heterogeneous catalys of transition-metal complex catalysts for CO ₂ reduction
70	Promises of main group metal- based nanostructured materials for electrochemical CO ₂ reduction to formate	 Introduction Fundamentals of electrochemical CO₂ reduction Main group metal-based electrocatalysts for selective CO₂RR to formate Flow cells or membrane electrode assembly cells Mechanistic studies using in situ characterization techniques Summary and outlook 	Main group metal-bass (Sn, Bi, In, Pb, Sb) electrocatalysts, cell design and mechanisti studies for selective CO ₂ reduction to form acid
71	Carbon-rich nonprecious metal single atom electrocatalysts for CO ₂ reduction and hydrogen evolution	 Introduction Characterization and evaluation of carbon-rich NPMSACs for CRR and HER Carbon-rich NPMSACs for CRR and HER Conclusion 	Structure-activity relationship of nonprecious metal single atom catalysts
72	Two-dimensional electrocatalysts for efficient reduction of carbon dioxide	 Introduction Overview of the structure and properties of 2D materials Synthesis of 2D materials Applications of 2D materials in the eCO₂RR Challenges and outlook 	Structures and catalyt properties of 2D catalysts
73	A review on photochemical, biochemical and electrochemical transformation of CO ₂ into value-added products	 Introduction Carbon cycle and CO₂ emission CO₂ capture and methodologies Products obtained from CO₂ transformation Photochemical transformation of CO₂ Biochemical transformation of CO₂ Electrochemical transformation of CO₂ Future research Conclusion 	Overview of CO ₂ reduction using photochemical, biochemical and electrochemical methods
74	Strategies for bioelectrochemical CO ₂ reduction	1. Introduction 2. Electrochemical CO ₂ reduction by enzymes 3. Electrochemical CO ₂ reduction by cells 4. Conclusion and outlooks 1. Introduction	CO ₂ reduction catalyze by electroactive enzymes and whole cells

	catalysts with atomic layer deposition for the reduction of carbon dioxide	 Atomic layer deposition designed catalysts The applications of the ALD-designed novel catalyst materials for CO₂ reduction The significance of ALD-prepared materials in CO₂ reduction 	for the designs of the efficient catalyst nanomaterials in CO ₂ reduction
		5. Summary and outlook	
76	Electrocatalytic water splitting and CO ₂ reduction: Sustainable solutions via single-atom catalysts supported on 2D materials	 Introduction SACs supported on 2D materials Energy harvesting applications with 2D materials Conclusion and perspectives 	Single-atom catalysts supported on 2D materials
77	Heterogeneous molecular catalysts for electrocatalytic CO ₂ reduction	 Introduction Metal center Extrinsic and intrinsic activity Mechanism of CO₂ reduction Ligand effects Electrode support effects Catalyst stability	Heterogeneous molecular catalysts for electrochemical CO ₂ reduction including polymers, metal-organic frameworks, and covalent-organic frameworks
78	Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO ₂ RR)	 Introduction Pt-based nanoalloys for the electrochemical oxygen reduction reaction Cu-based nanoalloys for the carbon dioxide reduction reaction Concluding future perspectives on nanoalloys 	Pt-based and Cu-based nanoalloy electrocatalysts for ORR and CO ₂ RR
79	Supported molecular catalysts for the heterogeneous CO_2 electroreduction	 Introduction Catalyst structure Immobilization strategy and support material Conclusions and perspectives 	Catalyst structure, immobilization strategy and support material of molecular catalysts for heterogeneous CO ₂ reduction
80	Advances in the electrochemical catalytic reduction of CO ₂ with metal complexes	 Introduction Selected examples of molecular catalyst development Conclusions and perspectives 	Electrochemical catalytic reduction of CO ₂ with metal complexes
81	Pathways to industrial-scale fuel out of thin air from CO ₂ electrolysis	 Introduction Solar-driven synthesis routes for MeOH using CO₂ electrolyzers Energy efficiency and distribution of a solar- driven MeOH synthesis process Relative scale of each sub-process Future outlook and summary 	Integration of direct CO ₂ air capture with CO ₂ and H ₂ O electrolyzers and a traditional MeOH synthesis step
82	Probing CO ₂ conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy	 Introduction Raman spectroelectrochemistry Surface-enhanced Raman spectroelectrochemistry Surface-selective infrared spectroelectrochemistry Surface-enhanced infrared absorption spectroelectrochemistry Surface-enhanced infrared absorption spectroelectrochemistry Emerging vibrational spectroscopy-based techniques Concluding remarks 	Operando probing of electrochemical CO ₂ reduction using Raman and infrared spectroscopy
83	One-dimensional nanomaterial electrocatalysts for CO ₂ fixation	 I. Introduction Metallic 1D nanostructured materials Metal-based 1D nanomaterials Carbon-based 1D nanomaterials Conclusion and Outlook 	1D nanomaterials for CO ₂ eletroreduction, including including metals, transition-metal oxides/nitrides, transition-metal chalcogenides, and carbon-based materials

	Emerging carbon-based heterogeneous catalysts for	CO ₂ 3. Linear scaling relations for metal surfaces	Metal-free doped carbon and aromatic N-
92	electrochemical CO ₂ conversion: From liquid-phase to gas-phase systems	 CO₂ reduction reaction with liquid-phase reactor CO₂ reduction reaction with gas-phase reactor Summary and outlook Introduction Challenges of the electrochemical reduction of 	Gas-phase reactor systems for CO ₂ reduction
91	Understanding the roadmap for electrochemical reduction of CO ₂ to multi-carbon oxygenates and hydrocarbons on copper- based catalysts Towards higher rate	 Introduction Atomistic mechanism of various C₂ and C₃ products Factors influencing the thermodynamics and kinetics of CRR to C₂ products Design principles of C₂ electrocatalysts Technical issues Challenges and outlook Introduction 	An in-depth discussion of the mechanistic aspects of various C ₂ reaction pathways on copper-based catalysts
90	Defect engineering in earth- abundant electrocatalysts for CO ₂ and N ₂ reduction	 Introduction Concept, characterization and engineering strategy of defect Defect engineering for electrocatalytic CRR and NRR Conclusions 	The type, regulation strategy, fine characterization methods of defect and the application in electrocatalytic CRR and NRR
89	Theoretical insights into heterogeneous (photo)electrochemical CO ₂ reduction	 Introduction Heterogeneous CO₂ photoelectrochemical reduction Heterogeneous CO₂ electrochemical reduction Discussion and outlook Summary 	Theoretical studies of heterogeneous (photo)electrochemical reduction
88	Secondary-sphere effects in molecular electrocatalytic CO ₂ reduction	1. Introduction2. Enzymes for the interconversion CO2 and COCO or formic acid3. Emerging systems4. Conclusions and outlook	Secondary-sphere strategies of molecular catalysts to facilitate rapid and selective CO ₂ reduction
87	A look at periodic trends in d- block molecular electrocatalysts for CO ₂ reduction	 Introduction Electrochemical CO₂ reduction with transition metal complexes Horizontal trends in transition metal complexes for CO₂ reduction Vertical trends in transition metal complexes for CO₂ reduction Ligand design and evolution for CO₂ reduction Formic acid producing catalysts Conclusions and prospects 	Trends of activity, electronic structure of catalytic intermediates and product selectivity in mononuclear complexes
86	Carbon dioxide photo/electroreduction with cobalt	 Introduction Catalytic reduction mechanism Types of Co-containing catalysts for CO₂ reduction Performance of CO₂ reduction based on Co-containing catalysts Conclusion and perspective 	CO ₂ photo/electroreduction with Co catalysts
85	Recent trends, benchmarking, and challenges of electrochemical reduction of CO ₂ by molecular catalysts	 Introduction Metal molecular catalysts Metal-free organic catalysts Conclusions and outlook 	Molecular catalysts and design principles for CO ₂ electroreduction
84	Advances in Sn-based catalysts for electrochemical CO ₂ reduction	 Introduction Reaction mechanism and pathways of the Sn-based electrocatalysts Advanced Sn-based catalysts for electrochemical CO₂ reduction Conclusions and outlook 	Various Sn-based electrocatalysts and reaction mechanisms

	chemicals	4. Nonmetal heteroatom-doped carbon nanostructures	reduction of CO ₂
		 5. Aromatic nitrogen substituted heterocycles 6. Metal–nitrogen–carbon structure 7. Summary and outlook 	
94	Electrochemical carbon dioxide splitting	 Introduction Fundamental principles Recent progress towards practical electrochemical CO₂ splitting Summary and perspectives 	The roles of main components of electrochemical CO ₂ splitting device, such as catalyst, electrode, electrolyzer, membrane, and electrolyte
95	Efficient and selective electrochemically driven enzyme-catalyzed reduction of carbon dioxide to formate using formate dehydrogenase and an artificial cofactor	 Introduction Carbon dioxide reduction using metal- independent FDH and its natural cofactor, NADH Replacing NADH with an artificial redox cofactor, methyl viologen Methyl viologen is a unidirectional cofactor for FDH Continuous reduction of carbon dioxide to formate in two-chamber and three-chamber electrolyzer configurations Conclusions 	Enzyme-catalyzed reduction of carbon dioxide to formate using formate dehydrogenase
96	Single-atom catalysis toward efficient CO ₂ conversion to CO and formate products	 Introduction Thermally stable SACS for selective CO₂-to- CO conversion Atomically dispersed Ni(I) SACs for highly efficient electrochemical CO₂ reduction reaction A quasi-homogeneous SAC for aqueous-phase CO₂ hydrogenation under mild conditions Cconclusions and perspectives 	Single-atom catalysts in thermal catalysis and electrocatalysis for CO ₂ reduction
97	Electrochemical reduction of CO_2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives	 Introduction Mechanistic pathways of CO₂ electroreduction in aqueous media Recent advances of electrocatalysts for improved performance and mechanistic understanding Summary and perspectives 	Underlying mechanistic studies and novel heterogeneous catalysts for electrochemical reduction of CO ₂
98	Rational catalyst and electrolyte design for CO ₂ electroreduction towards multicarbon products	 Introduction Catalyst design for C₂₊ products Electrolyte design for C₂₊ products Summary and outlook 	Rational design of catalyst and electrolyte for multicarbon products
99	Theoretical insights into selective electrochemical conversion of carbon dioxide	 Introduction Challenges of electrochemical CO₂ reduction reactions Strategies to tune intermediate binding 4. Conclusions 	Design principles of catalyst and electrolyte based on calculational studies
100	Nickel complexes as molecular catalysts for water splitting and CO ₂ reduction	 Introduction Water splitting Carbon dioxide reduction Conclusions 	Nickel complexes as molecular catalysts for water splitting and CO ₂ reduction

Supplementary references

- 1. S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang and T. E. Rufford, *J. Mater. Chem. A*, 2020, **8**, 1511–1544.
- 2. R. Daiyan, W. H. Saputera, H. Masood, J. Leverett, X. Lu and R. Amal, *Adv. Energy Mater.*, 2020, **10**, 1902106.

- 3. S. Liang, N. Altaf, L. Huang, Y. Gao and Q. Wang, J. CO2 Util., 2020, 35, 90–105.
- 4. S. A. Mahyoub, F. A. Qaraah, C. Chen, F. Zhang, S. Yan and Z. Cheng, *Sustain*. *Energy Fuels*, 2019, **4**, 50–67.
- 5. P. Shao, L. Yi, S. Chen, T. Zhou and J. Zhang, J. Energy Chem., 2020, 40, 156–170.
- 6. H. Shen, Z. Gu and G. Zheng, *Sci. Bull.*, 2019, **64**, 1805–1816.
- 7. J. Y. Choi, W. Choi, J. W. Park, C. K. Lim and H. Song, *Chem. Asian J.*, 2020, **15**, 253–265.
- 8. D. Sun, X. Xu, Y. Qin, S. P. Jiang and Z. Shao, *ChemSusChem*, 2020, 13, 39–58.
- 9. S. Malkhandi and B. S. Yeo, Curr. Opin. Chem. Eng., 2019, 26, 112–121.
- 10. G. Su, S. Yang, Y. Jiang, J. Li, S. Li, J.-C. Ren and W. Liu, *Prog. Surf. Sci.*, 2019, **94**, 100561.
- 11. L. Hou, J. Yan, L. Takele, Y. Wang, X. Yan and Y. Gao, *Inorg. Chem. Front.*, 2019, **6**, 3363–3380.
- 12. X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo, K. H. Lam, N. M. Adli, L. Lei, Z. Wen, G. Wu and Y. Hou, *J. Mater. Chem. A*, 2019, **7**, 25191–25202.
- 13. H. Li, C. Chen, D. Yan, Y. Wang, R. Chen, Y. Zou and S. Wang, *J. Mater. Chem. A*, 2019, 7, 23432–23450.
- 14. M. M. de Salles Pupo and R. Kortlever, *ChemPhysChem*, 2019, 20, 2926–2935.
- L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu and Z. Yin, *Chem. Soc. Rev.*, 2019, 48, 5310–5349.
- 16. C. Jia, K. Dastafkan, W. Ren, W. Yang and C. Zhao, *Sustainable Energy Fuels*, 2019, **3**, 2890–2906.
- 17. X. Zhu and Y. Li, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2019, 9, e1416.
- A. J. Keeler, G. R. Salazar-Banda and A. E. Russell, *Curr. Opin. Electrochem.*, 2019, 17, 90–96.
- 19. R.-B. Song, W. Zhu, J. Fu, Y. Chen, L. Liu, J.-R. Zhang, Y. Lin and J.-J. Zhu, *Adv. Mater.*, 2019. DOI: 10.1002/adma.201903796.
- 20. Q. Shao, P. Wang, S. Liu and X. Huang, J. Mater. Chem. A, 2019, 7, 20478–20493.
- 21. D. M. Fernandes, A. F. Peixoto and C. Freire, *Dalton Trans.*, 2019, 48, 13508–13528.
- 22. M. König, J. Vaes, E. Klemm and D. Pant, *iScience*, 2019, 19, 135–160.
- 23. R. Kas, O. Ayemoba, N. J. Firet, J. Middelkoop, W. A. Smith and A. Cuesta, *ChemPhysChem*, 2019, **20**, 2904–2925.
- 24. Q. Wang, Y. Zhang, H. Lin and J. Zhu, Chem. Eur. J., 2019, 25, 14026–14035.
- 25. S. Liu, H. Yang, X. Su, J. Ding, Q. Mao, Y. Huang, T. Zhang and B. Liu, *J. Energy Chem.*, 2019, **36**, 95–105.

- 26. Y. Cheng, S. Yang, S. P. Jiang and S. Wang, *Small Methods*, 2019, **3**, 1800440.
- Y. Gao, L. Neal, D. Ding, W. Wu, C. Baroi, A. M. Gaffney and F. Li, *ACS Catal.*, 2019, 9, 8592–8621.
- Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo and M. T. M. Koper, *Nat. Energy*, 2019, 4, 732–745.
- 29. M. G. Kibria, J. P. Edwards, C. M. Gabardo, C.-T. Dinh, A. Seifitokaldani, D. Sinton and E. H. Sargent, *Adv. Mater.*, 2019, **31**, 1807166.
- 30. R. Wang, F. Kapteijn and J. Gascon, Chem. Asian J., 2019, 14, 3452–3461.
- 31. P. Sebastián-Pascual, S. Mezzavilla, I. E. L. Stephens and M. Escudero-Escribano, *ChemCatChem*, 2019, **11**, 3626–3645.
- 32. M.-Y. Lee, K. T. Park, W. Lee, H. Lim, Y. Kwon and S. Kang, *Crit. Rev. Environ. Sci. Technol.*, 2020, **50**, 769–815.
- S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, *Chem. Rev.*, 2019, **119**, 7610–7672.
- 34. A. Brunetti and E. Fontananova, J. Nanosci. Nanotechnol., 2019, 19, 3124–3134.
- 35. T. Burdyny and W. A. Smith, *Energy Environ. Sci.*, 2019, **12**, 1442–1453.
- 36. S. Dou, X. Wang and S. Wang, *Small Methods*, 2019, **3**, 1800211.
- 37. Y. Peng, B. Lu and S. Chen, Adv. Mater., 2018, 30, 1801995.
- 38. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng and S. Z. Qiao, Chem, 2018, 4, 1809–1831.
- 39. H. Xie, T. Wang, J. Liang, Q. Li and S. Sun, Nano Today, 2018, 21, 41–54.
- 40. F. Li, D. R. MacFarlane and J. Zhang, *Nanoscale*, 2018, 10, 6235–6260.
- 41. D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang and C. P. Berlinguette, *Acc. Chem. Res.*, 2018, **51**, 910–918.
- 42. J. He, N. J. J. Johnson, A. Huang and C. P. Berlinguette, *ChemSusChem*, 2018, **11**, 48–57.
- 43. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang and Z. Jin, *Adv. Sci.*, 2018, **5**, 1700275.
- 44. J. E. Pander, D. Ren, Y. Huang, N. W. X. Loo, S. H. L. Hong and B. S. Yeo, *ChemElectroChem*, 2018, **5**, 219–237.
- 45. Y. Wang, J. Liu, Y. Wang, A. M. Al-Enizi and G. Zheng, *Small*, 2017, 13, 1701809.
- X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu and S. Dou, *Adv. Mater.*, 2017, 29, 1701784.
- 47. J. Wu, Y. Huang, W. Ye and Y. Li, Adv. Sci., 2017, 4, 1700194.
- 48. Z. Sun, T. Ma, H. Tao, Q. Fan and B. Han, *Chem*, 2017, **3**, 560–587.

- 49. L. Zhang, Z.-J. Zhao and J. Gong, Angew. Chem., Int. Ed., 2017, 56, 11326–11353.
- 50. B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar and C. Janáky, *Prog. Energy Combust. Sci.*, 2017, **62**, 133–154.
- 51. C. Yang, J. Chai, Z. Wang, Y. Xing, J. Peng and Q. Yan, *Chem. Res. Chinese Univ.*, 2020, **36**, 410–419.
- 52. H. Liu, Y. Zhu, J. Ma, Z. Zhang and W. Hu, Adv. Funct. Mater., 2020, 30, 1910534.
- 53. Y. Zhang, S.-X. Guo, X. Zhang, A. M. Bond and J. Zhang, *Nano Today*, 2020, **31**, 100835.
- 54. K. S. Adarsh, N. Chandrasekaran and V. Chakrapani, Front. Chem., 2020, 8, 137.
- 55. P. Prabhu, V. Jose and J.-M. Lee, Adv. Funct. Mater., 2020, 1910768.
- 56. A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang and T. Ma, *J. Mater. Chem. A*, 2020, 8, 3541–3562.
- C. Yan, L. Lin, G. Wang and X. Bao, *Cuihua Xuebao/Chinese J. Catal.*, 2019, 40, 23– 37.
- 58. L. Delafontaine, T. Asset and P. Atanassov, ChemSusChem, 2020, 13, 1688–1698.
- 59. J. Zhao, S. Xue, J. Barber, Y. Zhou, J. Meng and X. Ke, *J. Mater. Chem. A*, 2020, **8**, 4700–4734.
- 60. F. Lü, H. Bao, Y. Mi, Y. Liu, J. Sun, X. Peng, Y. Qiu, L. Zhuo, X. Liu and J. Luo, *Sustainable Energy Fuels*, 2020, 4, 1012–1028.
- 61. R. G. Grim, Z. Huang, M. T. Guarnieri, J. R. Ferrell, L. Tao and J. A. Schaidle, *Energy Environ. Sci.*, 2020, **13**, 472–494.
- 62. L. Sun, V. Reddu, A. C. Fisher and X. Wang, *Energy Environ. Sci.*, 2020, 13, 374–403.
- 63. C. B. Hiragond, H. Kim, J. Lee, S. Sorcar, C. Erkey and S.-I. In, *Catalysts*, 2020, 10, 98.
- 64. R. Kas, K. Yang, D. Bohra, R. Kortlever, T. Burdyny and W. A. Smith, *Chem. Sci.*, 2020, **11**, 1738–1749.
- 65. L. Fan, C. Xia, F. Yang, J. Wang, H. Wang and Y. Lu, Sci. Adv., 2020, 6, eaay3111.
- 66. H. Yang, X. Wang, Q. Hu, X. Chai, X. Ren, Q. Zhang, J. Liu and C. He, *Small Methods*, 2020. DOI: 10.1002/smtd.201900826.
- 67. T. K. Todorova, M. W. Schreiber and M. Fontecave, ACS Catal., 2020, 10, 1754–1768.
- 68. U. O. Nwabara, E. R. Cofell, S. Verma, E. Negro and P. J. A. Kenis, *ChemSusChem*, 2020, **13**, 855–875.
- 69. S. Zhang, Q. Fan, R. Xia and T. J. Meyer, Acc. Chem. Res., 2020, 53, 255–264.
- 70. N. Han, P. Ding, L. He, Y. Li and Y. Li, Adv. Energy Mater., 2020, 10, 1902338.
- 71. T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang, Z. Li, L. Lei, G. Wu and Y. Hou, *Small Methods*, 2019, **3**, 1900210.

- 72. Y. Zhang, L. Li, S. Guo, X. Zhang, F. Li, A. M. Bond and J. Zhang, *ChemSusChem*, 2020, **13**, 59–77.
- P. R. Yaashikaa, P. Senthil Kumar, S. J. Varjani and A. Saravanan, *J. CO2 Util.*, 2019, 33, 131–147.
- 74. M. Yuan, M. J. Kummer and S. D. Minteer, Chem. Eur. J., 2019, 25, 14258–14266.
- 75. Z. Chen, G. Zhang, J. Prakash, Y. Zheng and S. Sun, *Adv. Energy Mater.*, 2019, **9**, 1900889.
- 76. K. C. Kwon, J. M. Suh, R. S. Varma, M. Shokouhimehr and H. W. Jang, *Small Methods*, 2019, **3**, 1800492.
- 77. N. Corbin, J. Zeng, K. Williams and K. Manthiram, Nano Res., 2019, 12, 2093–2125.
- 78. C. Kim, F. Dionigi, V. Beermann, X. Wang, T. Möller and P. Strasser, *Adv. Mater.*, 2019, **31**, 1805617.
- 79. X. M. Hu, S. U. Pedersen and K. Daasbjerg, *Curr. Opin. Electrochem.*, 2019, **15**, 148–154.
- F. Franco, S. Fernández and J. Lloret-Fillol, *Curr. Opin. Electrochem.*, 2019, 15, 109– 117.
- 81. W. A. Smith, T. Burdyny, D. A. Vermaas and H. Geerlings, *Joule*, 2019, **3**, 1822–1834.
- 82. N. Heidary, K. H. Ly and N. Kornienko, Nano Lett., 2019, 19, 4817–4826.
- A. Guan, C. Yang, Y. Quan, H. Shen, N. Cao, T. Li, Y. Ji and G. Zheng, *Chem. Asian J.*, 2019, 14, 3969–3980.
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu and Y. Chen, *Nano-Micro Lett.*, 2019, 11, 62.
- 85. K. Elouarzaki, V. Kannan, V. Jose, H. S. Sabharwal and J. Lee, *Adv. Energy Mater.*, 2019, **9**, 1900090.
- C. Li, X. Tong, P. Yu, W. Du, J. Wu, H. Rao and Z. M. Wang, *J. Mater. Chem. A*, 2019, 7, 16622–16642.
- 87. C. Jiang, A. W. Nichols and C. W. Machan, Dalton Trans., 2019, 48, 9454–9468.
- 88. A. W. Nichols and C. W. Machan, Front. Chem., 2019, 7, 397.
- 89. S. Xu and E. A. Carter, Chem. Rev., 2019, 119, 6631–6669.
- 90. Q. Wang, Y. Lei, D. Wang and Y. Li, Energy Environ. Sci., 2019, 12, 1730-1750.
- 91. Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec and S. Z. Qiao, *J. Am. Chem. Soc.*, 2019, **141**, 7646–7659.
- 92. J. T. Song, H. Song, B. Kim and J. Oh, Catalysts, 2019, 9, 224.
- 93. J. Wu, T. Sharifi, Y. Gao, T. Zhang and P. M. Ajayan, Adv. Mater., 2019, 31, 1804257.
- 94. J. Xie, Y. Huang, M. Wu and Y. Wang, ChemElectroChem, 2019, 6, 1587–1604.

- 95. B. S. Jayathilake, S. Bhattacharya, N. Vaidehi and S. R. Narayanan, *Acc. Chem. Res.*, 2019, **52**, 676–685.
- 96. X. Su, X. F. Yang, Y. Huang, B. Liu and T. Zhang, Acc. Chem. Res., 2019, **52**, 656–664.
- 97. C. Long, X. Li, J. Guo, Y. Shi, S. Liu and Z. Tang, Small Methods, 2018, 3, 1800369.
- 98. D. Gao, R. M. Arán-Ais, H. S. Jeon and B. Roldan Cuenya, *Nat. Catal.*, 2019, **2**, 198–210.
- 99. C. W. Lee, C. Kim and B. K. Min, Nano Converg., 2019, 6, 8.
- 100. J. W. Wang, W. J. Liu, D. C. Zhong and T. B. Lu, *Coord. Chem. Rev.*, 2019, **378**, 237–261.