Electrocatalysis for CO₂ Conversion: from Fundamentals to

Value-added Products

Genxiang Wang,^{a,e} Junxiang Chen,^a Yichun Ding,^a, Pingwei Cai,^{a,e} Luocai Yi,^{a,e} Yan Li,^{a,c} Chaoyang Tu, ^d Yang Hou,^{e*} Zhenhai Wen,^{a*} and Liming Dai^{b*}

^aCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^bCentre for Advanced Carbon Materials, School of Chemical Engineering, University of New South Wales, Sydney, NSW2052, Australia

^cKey Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

^dCAS Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ^e University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Email: wen@fjirsm.ac.cn, yhou@zju.edu.cn, liming.dai@case.edu

1. Parameters in evaluating electrocatalysis of CO₂RR

In this section, the key parameters in evaluating the performance of electrocatalysts for CO_2RR , including the onset potential, overpotential, current density, faradaic efficiency, electrochemical surface area, turnover frequency, production rate and Tafel slope, will be elucidated.

1.1 Onset potential and overpotential

The onset potential for CO_2RR is determined by the potential when product is detected by chemical analysis during testing. The overpotential of the CO_2RR is the difference between the onset potential and equilibrium potential, which is an important indicator of the activity of catalysts, and the smaller the onset potential, the higher catalytic activity for the corresponding catalyst. During the electrochemical test, various reference electrodes can be used and should be corrected before testing CO_2 reduction. The testing potential is generally converted to the potential relative to reverse hydrogen electrode (RHE). Below listed is the conversion equation between several commonly used reference electrodes:

 $E (vs. RHE) = E(vs. Ag/AgCl(saturated)) + 0.197 V + 0.0591 V \times pH$ (Eq.1)

$$E (vs. RHE) = E(vs. Ag/AgCl(3M)) + 0.210 V + 0.0591 V \times pH (Eq.2)$$

$$E$$
 (vs. RHE) = E (vs. SCE) + 0.24V + 0.0591 V × pH (Eq.3)

E (vs. RHE) = E (vs. SHE) + 0.0591 V × pH (Eq.4)

where SHE, and SCE are the abbreviations of standard hydrogen electrode and saturated calomel electrode, respectively. The Ag/AgCl (3 M) indicates the filled solution is 3 M KCl, while Ag/AgCl (saturated) indicates the filled solution is the saturated KCl solution.

1.2 Current density

The current density, usually mass current density or area current density, is another crucial parameter for evaluating the reaction rate. It should be pointed out that an enhanced cathodic current in CO_2 atmosphere relative to that in inert gas (*e.g.*, Ar) atmosphere could not be used for judging the occurrence of CO_2RR , because the adsorbed intermediates (*e.g.*, CO) would lead to a lower current density during reducing CO_2 into hydrocarbons, and the gradual decrease of pH caused by the dissociation of CO_2 in aqueous solution would also enhance the HER current density.¹ The partial current density of the product for CO_2RR should be obtained by multiplying the corresponding faradaic efficiency by the overall current density.²⁵

1.3 Faradaic efficiency (FE)

The faradaic efficiency (FE), also called coulombic efficiency, represents the utilization efficiency of charge (or electrons) involved in a system facilitating an electrochemical reaction, which is normally used to estimate the selectivity of a catalyst for CO_2RR product, and the calculation formula is expressed as below (Eq.5):

$$FE = \frac{\alpha nF}{Q} \quad (Eq.5)$$

where α denotes the numbers of transferred electrons (*e.g.* $\alpha = 2$ for reduction of CO₂ to HCOOH), n denotes the number of moles of the obtained products, F is the faradaic constant (96 485 C mol⁻¹), and Q denotes the total charge.

1.4 Energy efficiency (EE)

The energy efficiency (EE) is the overall energy utilization toward the desired product, which can be calculated by the following equation:

$$EE = \frac{E_{eq}}{E_{eq} + \mathfrak{y}} \times \mathrm{FE}$$

Where Eeq stands for equilibrium potential and η stands for the overpotential of the desired product. According to the equation, we can know that the smaller the overpotential for the desired product, the larger the energy efficiency for the CO₂ reduction.

1.5 Electrochemical surface area (ECSA)

The number of electrochemically active sites of an electrode can be evaluated by the electrochemical surface area (ECSA), which is greatly dependent on the nature of electrodes and the preparation method.² Notably, not all the electrochemically active sites are catalytically active. The ECSA can be calculated by Eq. 6 as following:³

$$ECSA = \frac{C_{dl}}{C_s} \quad (Eq.6)$$

 C_{dl} is the electrical double-layer capacitance of which is obtained by scanning cyclic voltammetric stripping of the work electrode in the non-Faradaic regions (non-faradaic current density j) at different scan rates v, *i.e.* the slope of the linearity between j and v, C_{dl} = j/v. C_s is the specific capacitance of corresponding smooth metal or oxide electrode.³

1.6 Turnover frequency (TOF)

The turnover frequency (TOF) is used to quantify the per-site activity of the electrocatalysts, which characterizes the level of catalytic activity. TOF for a specific product i can be acquired by Eq. 7:

$$TOF(i) = \frac{j \cdot FE(i)}{nFN_a}$$
(Eq.7)

where j is the current density (A m⁻²), n is the mole number of electrons transfer per mole of product i (*e.g.*, n = 2 for product CO), and N_a is the active site density of the electrocatalyst (mol m⁻²).

1.7 Production rate (PR)

The production rate is used to evaluate the practical applicability of a specific electrocatalyst and defines the reaction rate necessary to obtain a particular product. The PR for a certain product (such as CO, $\alpha = 2$) on an electrocatalyst can be estimated by Eq. 8:

$$PR(i) = \frac{j \cdot FE}{\alpha \cdot F} \quad (Eq.8)$$

Production rate is a vital parameter for evaluating the practical applicability of a catalyst for a long-lasting experiment under the steady-state, and it is necessary to estimate the production rate of a desired product in studying a catalyst or device for CO_2RR .

1.8 Tafel slope

The Tafel slope is a plot of overpotential *vs.* logarithm of the partial current density of some product, which is commonly applied to assess electro-kinetic pathway and mechanism of the reaction. The smaller the Tafel slope, the better the catalytic performance of the catalyst. Generally, a Tafel slope of 59 mV dec⁻¹ for CO_2RR

means it is a one-electron pre-equilibrium step before a later rate-limiting chemical step, while a Tafel slope of 118 mV dec⁻¹ suggests that the initial one-electron transfer step forming CO_2^{-} is the rate-determining step of the reaction.

1.9 Adsorption energy of the key CO₂-related intermediate

The adsorption energy of CO_2^{*-} (CO_2^{-} adsorbed on the active site, asterisk (*) stands for the active site) can be used to evaluate the activity of CO_2 reduction.^{4, 5} Generally, the OH⁻ acts as the surrogate of CO_2^{*-} , and the adsorption energy of CO_2^{*-} on the surface of catalysts is estimated by performing the anodic linear sweep voltammetry (LSV) curves in N₂-saturated alkaline electrolyte (such as 0.1 M KOH). The more negative adsorption peak indicates the stronger bond strength of CO_2^{*-} intermediate(s) with active sites, thus facilitates CO_2 reduction.

Catalysts	Electrolyte	Durability test	Potential	Current density/ mA	CO FE	References
				cm ⁻²		
Au plate	0.5 M KHCO ₃	-	-1.00 V vs. NHE	-3.7 (pcd)	91%	6
oxide-derived Au	0.5 M NaHCO ₃	8 h	-0.35 V vs. RHE	-2~4	>96%	7
8 nm Au NPs	0.5 M KHCO ₃	-	-0.67 V vs. RHE	-8	90%	8
4 nm Au NPs	0.5 M KHCO ₃	-	-0.59 V vs. RHE	-166.1 A g ⁻¹	78%	9
Au QDDCs	0.5 M KHCO ₃	80 h	-0.3 V vs. RHE	19	95%	10
ER-Au-UR/C	0.1 M KHCO ₃	10 h	-0.68 V vs. RHE	-4.4	94.2%	11
Au NWs	0.5 M KHCO ₃	12 h	-0.35 V vs. RHE	-1.84 A g ⁻¹	94%	12
Au-NW stacked	0.2 M KHCO ₃	-	-0.69 V vs. RHE	^m -3	~93%	13
electrode						
Au25 nanoclusters	0.1 M KHCO3	-	-0.8 V vs. RHE	-1.4	90%	14
Au-IO thin films	0.5 M KHCO ₃	-	-0.51 V vs. RHE	-	99%	15
Au nanoneedles	0.5 M KHCO ₃	8 h	-0.35 V vs. RHE	-22	>95%	16
Au hierarchical	0.5 M KHCO ₃	-	-0.4V vs. RHE	-38	98%	17
nanoneedles						
porous Au film	0.1 M KHCO ₃	9 h	-0.50 V vs. RHE	-8.3	91%	18
Nanoporous Au	0.1 M NaHCO ₃	10 h	-0.60 V vs. RHE	^m -15	95.9%	19
Nanoporous Au	0.5 M KHCO ₃	2.5 h	-1.2 V vs. Ag/AgCl	-20.51 A g ⁻¹	90%	20
leaf						
Nanoporous Au	0.5 M KHCO ₃	10 h	-0.6 V vs. RHE	^m -17 (pcd)	94%	21
Hierarchically	0.2 M KHCO ₃	-	-0.374 V vs. RHE		85.8%	22
porous Au						
Oxide-derived	0.1 M KHCO ₃	12 h	0.3 V vs. RHE	^m -2.5 (pcd)	>90%	23
nanoporous Au						
Nano-folded Au	0.1 M KHCO3	-	0.5V vs. RHE	-2.4	87.4%	24
Pore-like RA-Au	0.2 M KHCO ₃	-	-0.39 V vs. RHE	^m -0.25 (pcd)	>90%	25
Nano-Au	0.5 M KHCO ₃	10000s	-0.57 V vs. RHE	^m -80	~92%	26

Table 1. Performance of Au related materials for CO_2RR with CO as the main product

Au/CNT	0.5 M NaHCO ₃	12 h	-0.50 V vs. RHE	-13 A g ⁻¹	94%	27
Au NPs/GNR	0.5 M KHCO ₃	>24 h	-0.66 V vs. RHE	^m -34 A g ⁻¹	92%	28
Au/CeO _x -C	0.1 M KHCO ₃	-	-0.89 V vs. RHE	-12.9 (pcd)	89.1%	29
Au/C ₃ N ₄	0.5 M KHCO ₃	15h	-0.45 V vs. RHE	-2.48	90%	30
Au/Py-CNTs-O	0.1 M KHCO ₃	10 h	-0.58 vs. RHE	-69 A g ⁻¹ _{Au}	93%	31
CTAB-Au/SnO ₂	0.5 M KHCO ₃	-	-0.5 vs. RHE	-0.26(pcd)	96%	32
AuFe core-shell	0.5 M KHCO ₃	90 h	-0.4 V vs. RHE	-48.2	97.3%	33
Ordered AuCu	0.1 M KHCO ₃	12 h	-0.77 V vs. RHE	-1.39 (pcd)	80%	34
NPs						
Ag@Au nanowires	0.1 M KHCO3+	12 h	-1.14 V vs. RHE	-5.61	99.65%	35
	0.1 M KCl					
AuCu ₃ @Au	0.1 M KHCO ₃	100 h	-0.6 V vs. RHE	-5.3 (pcd)	97.27%	36
electrode						
Au ₉₄ Pd ₆	0.5 M KHCO ₃	12 h	-0.6 V vs. RHE	-156.1 A g _{Pd+Au} ⁻¹	96.7%	37
nanoparticles						
Dealloyed Au ₃ Cu	0.5 M KHCO ₃	5 h	-0.38 V vs. RHE	-3	>90%	38
4%Au-Cdots-C ₃ N ₄	0.5 M KHCO ₃	8 h, 60 d	-0.4 V vs. RHE	^m -0.05	79.8%	39
Cl modified Au	0.2 M KHCO ₃	-	-0.39 V vs. RHE	^m -0.04 (pcd)	79%	40
Porphyrin	0.5 M KHCO ₃	72 h	-0.45 V vs. RHE	-2	93%	41
functionalized Au						
NPs						
Au-OLA	0.1 M KHCO ₃	10 h	-0.65 V vs. RHE	-102 A g ⁻¹	59%	42
PEG-modified Au	0.5 M KHCO ₃	-	-0.57 V vs. RHE	^m -3 (pcd)	100%	43
PVA- Au-C	0.5 M KHCO ₃	24 h	-0.77 V vs. RHE	-98.6 (pcd)	>90%	44

Catalysts	Electrolyte	Durability	Potential	Current density/	CO FE	Reference
		test		mA cm ⁻²		
Ag electrode	0.1 M CsHCO ₃	-	-1.0 V vs. RHE	^m -5.8	80.3%	45
Ag	18 mol% EMIM	7 h	1.5 V	-	96%	46
nanoparticles(>100nm)	BF ₄ in H ₂ O					
Ag metal	EMIMBF ₄ +BMIM	-	-2.0 V vs. SCE	-5.4±0.1	98%	47
	NO ₃ +0.25mg CoCl					
L25-Ag nanocubes	0.1 M KHCO3	18 h	-0.856 V vs. RHE	^m -1.7	99%	48
Ag NWs (35 nm)	0.5 M KHCO ₃	12 h	-0.9 V vs. RHE	m_7	80%	49
D-25 Ag NWs (diameter	0.1 M KHCO3	24 h	-0.956V vs. RHE	^m -3.2	99.3%	50
less than 25 nm)						
Ag NWs (200 nm)	0.5 M KHCO ₃	24 h	-0.7V vs. RHE	-12.22	84%	51
Ag nanoporous	0.5 M KHCO ₃	2 h	-0.6 V vs. RHE	-18	92%	52
6 μm thick highly porous	0.5 M KHCO ₃	3 h	-0.5V vs. RHE	-10.5 (pcd)	82%	53
Ag						
porous Ag	0.5 M KHCO ₃	4 h	-1.7 V vs. SCE	-14	93%	54
Sponge-like porous Ag	0.1 M KHCO3	24 h	-0.9 V vs. RHE	m_7	93%	55
Ag nanosheets	0.5 M KHCO ₃	-	-0.6 V vs. RHE	-1.6	>90%	56
Ag-IO	0.1 M KHCO ₃	-	-0.7 V vs. RHE	^m -0.015 (s _{CO})	80%	57
oxide-derived Ag	0.1 M KHCO ₃	2 h	-0.8 V vs. RHE	-1.15	89%	58
Ag ₂ CO ₃ -derived Ag	0.1 M KHCO ₃	100 h	-0.55 V vs. RHE	^m -1.5	>90%	59
Ag ₂ CO ₃ -derived Ag	0.5 M KHCO ₃	-	-0.67 V vs. RHE	^m -4.2(pcd)	96.7%	60
nanoparticles						
Carbonate-derived Ag	1 M KOH(flow	24 h	-0.7 V vs. RHE	>150	>90%	61
	reactor)					
Iodide-derived Ag	0.5 M KHCO ₃	10 h	-0.7 V vs. RHE	-16.7	94.5%	62
Ag ₃ PO ₄ -derived Ag	0.5 M KHCO ₃	10 h	-0.7 V vs. RHE	-2.93	97.3%	63
AgCl-derived Ag	NaCl(3.5%)	24 h	-1.1 V vs. RHE	^m -7.5	~90%	64

Table 2. Performance of Ag-related materials for CO₂RR with CO as the main product

rough surface Ag	0.1 M KHCO ₃	-	-1.1 V vs. RHE	-5.73 (pcd)	88.87%	65
Cl modified Ag	0.1 M KHCO ₃	72 h	-0.48 V vs. RHE	-2	ca.98%	66
nonocorals						
Cl modified Ag	0.5 M KHCO ₃	20 h	-0.8 V vs. RHE	-9.40 (pcd)	98%	67
nanoparticles						
Amine modified Ag	0.1 M KHCO ₃	-	-0.75 V vs. RHE	-	94.20%	68
cysteamine Ag 5 nm	0.5 M KHCO ₃	-	-0.75 V vs. RHE	-3.8 (pcd)	84.40%	69
nanoparticles						
SCN modified Ag Foam	0.5 M KHCO ₃	10 h	-1.3 V vs. RHE	-32.4	$94.8\pm2.9\%$	70
Sodium dodecyl sulfate	0.1 M KHCO ₃	8 h	-0.79V vs. RHE	-8.23	92.2%	71
modified Ag Nps						
Protein modified Ag NR	0.5 M KHCO3	12 h	-1.128 V vs. RHE	-7.51	95%	72
mixed layer-Ag-	1М КОН	-	-3 V	-350	>95%	73
MWCNT						
$[PMo_{12}O_{40}]^{3\text{-}} \hspace{0.5cm} \text{modified}$	DMF (0.1M [n-	-	-1.7 V vs. Fc ^{0/+}	^m -2.5	90±5%	74
Ag	$Bu_4N]PF_6$ and					
	0.5% (v/v) H ₂ O)					
Benzenethiolate-modified	0.1 M KHCO ₃	-	-1.03 vs. RHE	502 A/g	96%	75
porous Ag						
Ag film/aminosilane	0.5 M KHCO3	-	-0.3 V vs. RHE	-	75.7%	76
deposited substrate						
plasma-activated Ag	0.1 M KHCO ₃	0.5 h	-0.6 V vs. RHE	^m -2.25 (pcd)	>90%	77
p-Ag:5	0.5 M KHCO ₃	5 h	-1.04 V vs. RHE	^m -14	83.50%	78
anodized Ag	0.1 M KHCO ₃	2 h	-0.61 V vs. RHE	-	92.80%	79
3-D Ag foam	0.1 M KHCO ₃	12 h	-0.99 V vs. RHE	-10.8	94.70%	80
Ag foam	0.5 M KHCO3	72 h	0.80 V vs. RHE		>90%	81
Air-annealed Ag	0.1 M KHCO ₃	2.66 h	-0.97 V vs. RHE	-21.2	91.70%	82
40% Ag/TiO ₂	1 M KOH (flow	-	-1.8 V vs. Ag/AgCl	-101 (pcd)	93%	83
	reactor)					

SnO _x /Ag	0.5 M KHCO ₃	12 h	-0.6 V vs. RHE	^m -1	85%	84
Ag/(A-Sn(IV)) NPs	0.5 M NaHCO ₃	12 h	-0.7 V vs. RHE	-7.9	88%	85
Ag ₂ P nano crystals	0.5 M KHCO ₃	12 h	-0.8 V vs. RHE	^m -7.5	82%	86
De-sulfidated Ag NWs	0.5 M KHCO ₃	18 h	-0.75 V vs. RHE	-1.3	~81%	87

m: evaluated from the figures; pcd: partial current density; s $_{\rm CO}$:specific current density of CO

Catalysts	Electrolyte	Durability	Potential	Current density	CO FE	References
		test				
Pd icosahedra/C	0.1 M KHCO3	10 h	-0.8 V vs. RHE	^m -2 mA cm ⁻²	91.1%	88
Pd octahedra/C	0.1 M KHCO ₃	10 h	-0.7 V vs. RHE	^m -0.5 mA cm ⁻²	53.60%	88
Pd octahedra NPs	0.5 M NaHCO ₃	-	-0.7 V vs. RHE	m-16 mA cm ⁻² (pcd)	94%	89
Pd NPs (3.7nm)	0.1 M KHCO3	-	-0.89 V vs. RHE	-23.9A g ⁻¹	91.20%	90
Pd NPs	1 M KHCO ₃		-0.7 V vs. RHE	-22.9 mA cm ⁻²	93.4%	91
				(pcd)		
Pd/C	0.5 M NaHCO ₃	-	-0.6 V vs. RHE	^m -0.3 mA cm ⁻²	ca.48%	92
Ultra-small Pd NPs	0.5 M KHCO ₃	12 h	-0.6V vs. RHE	^m -2 mA cm ⁻²	92.6%	93
Pd ₃ Cu nanocrystal	0.1 M KHCO ₃	-	-0.9 V vs. RHE	-4.5 mA cm ⁻² (pcd)	82.10%	94
Pd ₈₅ Cu ₁₅ /C	0.1 M KHCO ₃	-	-0.89 V vs. RHE	-6.9 mA cm ⁻² (pcd)	86%	95
PdCu	0.1 M KHCO3	5 h	-0.9 V vs. RHE	-47 mA mg_{Pd}^{-1}	87%	96
Pd _{0.8} Au	0.5 M KHCO ₃	20 h	-0.6 V vs. RHE	-2.77 mA cm ⁻²	94.3%	97
Te-doped Pd	0.1 M KHCO3	5 h	-0.8 V vs. RHE	-4.4 mA cm ⁻² (pcd)	90.00%	98
Pd nanosheets(5.1 nm)	0.1 M KHCO3	8 h	-0.6 V vs. RHE	-3.0 mA cm ⁻²	> 90%	99

Table 3. Performance of Pd-related materials for CO₂RR with CO as the main product

Catalysts	Electrolyte	Durability	Potential	Current density/	CO FE	References
		test		mA cm ⁻²		
Anodized Zn	0.5 M NaCl	10h	-1.6 vs. SCE	^m -2	93%	100
Dendried Zn	0.5 M NaHCO ₃	3h	-0.9V vs. RHE	-4(pcd)	62%	101
Porous Zn	0.1 M KHCO3		-0.95 V vs. RHE	-27	95%	102
h-Zn	0.5 M KHCO ₃	30h	-0.9V vs. RHE	-11.7	84%	103
RE-Zn-CO ₂	0.5 M KHCO ₃	-	-0.9V vs. RHE	-6.6	78%	104
RE-Zn-CO ₂ /KCl	0.5 M KCl	-	-1.05V vs. RHE	-4.3	95.3%	202
LiET-Zn/GCE	0.1 M KHCO3	4h	-1.17V vs. RHE	-26.5	91.1%	105
LiET-Zn/CPF	0.1 M KHCO3	-	-0.8 V vs. RHE	^m -5.9 (pcd)	71.0%	207
Zn foil	PC/TBAP	4h	-2.3V vs. Fc/Fc ⁺	-6.72	83%	106
	+6.8%H ₂ O					
Oxygen vacancies riched	0.1 M KHCO3	8h	-1.1 V vs. RHE	-16.1	83%	107
ZnO						
rZnO@G	EMIM-BF ₄ /H ₂ O	-	-0.813 V vs. RHE	-5.2	83%	108
	(V/V=7/1)					
Zn/ZnS	0.1 M KHCO3	15 h	-0.8 V vs. RHE	-4.28 (pcd)	94.2%	109
Multilayered Zn	0.5 M NaHCO ₃	7 h	-1.13 V vs. RHE	-14	86%	110
nanosheets						
Porous Zn nanosheets	0.1 M KHCO3	12 h	-1.0V vs. RHE	-8.5	>88%	111
ZnGa ₂ O ₄	0.1 M KHCO3	10 h	-0.8 V vs. RHE	^m -0.5	96%	112

Table 4. Performance of Zn related materials for CO₂RR with CO as the main product

Catalysts	Electrolyte	Durability	Potential	Current density/	CO FE	Reference
		test		mA cm ⁻²		
CuO-derived Cu NWs	0.1 M KHCO3	-	-0.60 V vs.RHE	^m -0.6	~50%	113
ECR Cu NWs	0.5 M KHCO3	-	-0.41 V vs. RHE	-1	~60%	114
ECR-Cu NWs	0.1 M KHCO3	-	-0.40 V vs. RHE	^m 0.45	~62%	115
Cu nanopillar (5h)	0.1 M KHCO3	6 h	-0.5 V vs. RHE	^m -1.23	28.67%	116
Cu hollow fibers	0.3 M KHCO ₃	24 h	-0.4 V vs. RHE	^m -9	75%	117
Cu-IOs	0.1 M KHCO3	10 h	-0.6 V vs. RHE	-1.2	45.3%	118
CuO-IO	0.1 M KHCO3	24 h	-0.6 V vs. RHE	^m -2.5	72.5±1.8	119
					%	
Cu nanosheets	0.5 M KHCO3	20 h	-1.0 V vs. RHE	-23 (pcd)	74.1%	120
Sn-modified Cu ₂ O	0.1 M KHCO3	12 h	-0.6 V vs. RHE	^m -8.0 (pcd)	(CE) 75%	121
Sn-decorated Cu _x O NWs	0.1 M KHCO3	12 h	-0.80 V vs. RHE	-4.5 (pcd)	90%	122
Cu/SnO ₂ core-shell	0.5 M KHCO ₃	-	-0.7 V vs. RHE	-4.6	93%	123
Cu-Sn alloy	0.1 M KHCO3	14 h	-0.6 V vs. RHE	-1	>90%	124
Cu ₂₂ Sn	0.1 M KHCO3	6 h	-0.81 V vs. RHE	^m -2	92%	125
Cu ₂ Cd/Cd/Cu	0.1 M KHCO3	12 h	-0.80 V vs. RHE	-8	84%	126
Sn catalysts	MeCN (100 mM	1 h	-1.95 V vs. SCE	-5	77%	127
	[MEMIM]OTf)					
Cu/Ni(OH) nanosheets	0.5 M NaHCO ₃	22 h	-0.5 V vs. RHE	-4.3	92%	128
Cu _x Ni _y /N-C	0.5 M KHCO3	38 h	-0.6 V vs. RHE	-18.8	94.5%	129
Co _{0.75} Ni _{0.25} /N-C NFs	0.5 M NaHCO ₃	20 h	-0.9 V vs. RHE	-13.4	85%	130
Cu ₂ O/CuO@Ni	0.5 M KHCO3	25 h	-1.2 V vs. RHE	^m -27	95%	131
Cu-In alloy	0.1 M KHCO3	7 h	-0.5 V vs. RHE	^m -0.5	90%	132
Cu-In alloy (CuInO ₂)	0.1 M KHCO ₃	5 h	-0.80 V vs. RHE	^m -2.0	70%	133
CuIn alloy NWs	0.5 M KHCO3	15 h	-0.60 V vs. RHE	-2.66(pcd)	>68.2%	134
InCuO-0.92	0.5 M KHCO ₃	24 h	-0.80 V vs. RHE	-11.2	92.1%	135

Table 5. Performance of other metals and metal compounds for CO_2RR with CO as the main

product

In/Cu NWs	0.1 M KHCO3	60 h	-0.60 V vs. RHE	-1.7	>90%	136
Nanoporous Cu-In	0.1 M KHCO3	7 h	-0.95 V vs. RHE	-4.5	91%	137
CuO-In ₂ O ₃ /NCNTs	0.1 M KHCO ₃	10 h	-0.70 V vs. RHE	-4.3(pcd)	93%	138
CuIn-ESP25min	1 M KOH (flow cell)	-	-1.17 V vs. RHE	-200	~90%	139
In-doped Cu@Cu2O	0.1 M KHCO ₃	4 h	-0.80 V vs. RHE	-(11.1 ± 0.85)	87.6 ±	140
					2.2%	
Ag ₉₁ Cu ₉	0.1 M KHCO ₃	10 h	-0.70 V vs. RHE	-5.6	80.6%	141
h-CuS MCs	0.5 M KHCO ₃	10 h	-0.16 V vs. RHE	^m -0.01	32.7%	142
3D Cu-Ag	0.5 M KHCO3 (flow	15 h	-0.80 V vs. RHE	^m -9	95.7%	143
	cell)					
Cu/CA	0.1 M KHCO ₃	10 h	-0.60 V vs. RHE	^m -3	75.6%	144
Cu ₃ P/C	0.1 M NaHCO ₃	2000 s	-0.30 V vs. RHE	-0.05	47%	145
CuO-Cu@BC	0.5 M KHCO ₃	40 h	-0.60 V vs. RHE	^m -4.8	53%	146
Ag _{0.66} In _{0.34}	0.5 M KHCO ₃	-	-1.3 V vs. SCE	^m -0.5	68.8%	147
In situ reduced-In ₂ O ₃	0.1 M Na ₂ SO ₄	-	-1.0 V vs. Ag/AgCl	^m -0.25	~100%	148
Co ₃ O ₄ nanofibers	0.1 M TBAPF ₆ in	8 h	-1.56 V vs. NHE	-0.5	65%	149
	acetonitrile + $0.1\%_{vol}$					
	H ₂ O					
Ga gel/C	0.1 M KHCO3	2000 s	-0.70 V vs. RHE	m_5	77.0%	150
MoS ₂	4 mol% EMIM-BF4 in	10 h	-0.764 V vs. RHE	-65	98%	151
	water					
$Mo_{0.95}Nb_{0.05}S_2$	50 vol% EMIM-BF4 in	-	-0.8 V vs. RHE	-237	82%	152
	water					
WSe ₂	50/50 vol% IL (EMIM-	-	-0.164 V vs. RHE	-18.95	24%	153
	BF ₄)/water					
MoS ₂ -PEI-modified	0.5 M NaHCO ₃	3 h	-0.65 V vs. RHE	^m -4	85%	154
graphene oxide						
TiO ₂ @MoS ₂	0.1 M NaHCO ₃	14 h	-0.7 V vs. RHE	-83	82%	155
Fluorosilance-decorated	6 mol% EMIM-BF ₄ in	10 h	-0.92 V vs. RHE	^m -25	81.2%	156

MoS_2	water					
N-MoS ₂ @NCDs-180	EMIM-BF ₄ solutions	10 h	-0.9 V vs. RHE	-36.2	90.2%	157
	(94 mol% H ₂ O)					
Ag ₂ S NWs	50 vol% EMIM-BF ₄ +	19 h	-0.864 V vs. RHE	^m -10.2 (pcd)	92%	158
	50 vol% H ₂ O					
MoSeS monolayer	4 mol% EMIM BF ₄ +	10 h	-1.15 V vs. RHE	-43	45.2%	159
	96% H ₂ O					
CdS	0.1M KHCO ₃	10 h	-1.2 V vs. RHE	-21.9 (pcd)	81%	160
CdS nanoneedle arrays	5 M KOH(flow cell)	4 h	-1.2 V vs. RHE	-212	~95.5%	161
CdS-CNTs	0.5 M KHCO ₃	10 h	-1.2 V vs. RHE	-11.4	92%	162
F-7-In2Se3/CP	30wt%[Bmim]PF ₆ /65w	5 h	-2.0 V vs. SCE	-55.3	96.5%	163
	t%MeCN/5 wt%H2O					
Cd nanoparticles derived	[BMIM]PF ₆ +MeCN	10 h	-1.85 V vs. RHE	-59.0 (pcd)	99.2%	164
Cd(OH) ₂						
Ga gel/C	0.1M KHCO ₃	-	-0.71 V vs. RHE	-10.7	77%	150
$Fe_{4.5}Ni_{4.5}S_8$	MeCN(24 ppm H ₂ O)	-	-1.8V vs. NHE	-3	87%	165
Pb/PbO@OMC-800	[Bmim]BF ₄ (0.5 M)-	10 h	-2.3 V vs. Ag/Ag ⁺	-41.3	98.3%	166
	MeCN					
Hierarchical CoS ₂	0.5 M KHCO ₃	2000 s	-0.60 V vs. RHE	-2.8(pcd)	85.7%	167
nanocages-300						

m: evaluated from the figures; pcd: partial current density;CE: current efficiency.

Catalysts	Electrolyte	Durability	Potential	Current density/	FE _{CO}	Active sites
		test		mA cm ⁻²		
Fe-N-C(Fe _{0.5} d) ¹⁶⁸	0.5 M NaHCO ₃	-	-0.6V vs. RHE	^m -7.5	80%	FeN ₄ sites
Fe-N-C ¹⁶⁹	0.1 M NaHCO ₃	-	-0.6V vs. RHE	^m -2.5	80%	N moieties
Fe-N-C ¹⁷⁰	0.1 M KHCO ₃	-	-0.55 V vs. RHE	^m -2.5	65%	Fe-N _x moieties
Fe-N-C-950 ¹⁷¹	0.1 M KHCO ₃	12 h	-0.6V vs. RHE	-1.2	74%	Fe-N sites
Ni-N-C ¹⁷²	0.5 M KHCO ₃	12 h	-0.67 V vs. RHE	-3.9	93%	Atomically
						dispersed Ni
						sites
NiASs/PTF ¹⁷³	0.5 M KHCO ₃	10 h	-0.8 V vs. RHE	-14.4	98%	Ni-N ₄
Ni-N-CNSs ¹⁷⁴	0.5 M KHCO ₃	25 h	-0.75 V vs. RHE	^m -5.5	95.3%	Ni-N
Fe/Ni-NC ¹⁷⁵	0.5 M KHCO ₃	50 h	-1.0 V vs. RHE	-10	96%	N-C and Fe/Ni
						nano-alloy
Ni-N ₃ -V/CC ¹⁷⁶	0.5 M KHCO ₃	14 h	-0.8 V vs. RHE	^m -50	94%	Ni-N ₃ -Vacancy
Fe-N-C ¹⁷⁷	0.1 M KHCO ₃	-	-0.6 V vs. RHE	^m -4.5	85%	-
FexN@Fe-N-C ¹⁷⁸	0.1 M KHCO ₃	24 h	-0.53 V vs. RHE	-4.71	95%	Encased Fe _x N
Fe/Fe ₃ C@NCNT-	0.5 M KHCO ₃	-	-0.74 V vs. RHE	^m -11	50%	-
750179						
$Fe_{3}N_{x}/C^{180}$	0.1 M Na ₂ SO ₄	5 h	-0.6 V vs. RHE	^m -2.5	85%	Fe _x N and C-N-
						based centers
Fe-N-G/bC ¹⁸¹	0.1 M KHCO ₃	12 h	-0.66 V vs. RHE	^m -7.5	95%	-
Fe ³⁺ -N-C ¹⁸²	0.5 M	30 h	-0.45 V vs. RHE	-94(pcd)	>90%	Fe ³⁺ sites
	KHCO ₃ (flow					
	cell)					
Fe-NS-C ¹⁸³	0.5 M KHCO ₃	30 h	-0.56 vs. RHE	-11	>90%	Doped S and
						Fe-N _x
FeNPCN ¹⁸⁴	0.1 M KHCO ₃	12 h	-0.5 V vs. RHE	^m -0.7	94%	C,N coordinated
						atomic Fe

Table 6. CO₂RR performance of heteroatom-doped carbon materials with CO as the main product

Fe-SAs/N-C ¹⁸⁵	0.5 M NaCl	-	-0.45 V vs. RHE	^m _7	99.6%	Single iron
						atoms
Fe-N/O-C(MZ) ¹⁸⁶	0.1 M KHCO3	22 h	-0.58 V vs. RHE	-5.4(pcd)	96%	Fe-N ₄ O sites
MPPCN-750 ¹⁸⁷	0.5 M KHCO3	12 h	-0.7 V vs. RHE	^m -1.2	95.9%	Fe-N ₄
H-M-G ¹⁸⁸	0.1 M KHCO ₃	24 h	-0.46 V vs. RHE	^m -1.7	97%	FeN ₅
Fe-CNPs ¹⁸⁹	1 M KHCO ₃	8 h	-0.58 V vs. RHE	^m _7	98.8%	Fe-N
rGO-PVP-ZIFc ¹⁹⁰	0.5 M KHCO3	8 h	-0.62 V vs. RHE	^m -6.5	98.6%	Fe-N
Fe-SA/NCS-700 ¹⁹¹	0.5 M KHCO ₃	10 h	-0.45 V vs. RHE	^m -10	87%	Fe-N ₄
Ni-N-Gr ¹⁹²	0.1 M KHCO3	5 h	-0.7 V vs. RHE	^m -0.6	>90%	Ni-N site
Ni-N ₄ -C ¹⁹³	0.5 M KHCO ₃	30 h	-0.81 V vs. RHE	-28.6	99%	Ni-N ₄ sites
Ni-N-C ¹⁹⁴	0.1 M KHCO3	9 h	-0.75 V vs. RHE	-8.2	96%	Ni-N
Ni-N-MEGO ¹⁹⁵	0.5 M KHCO ₃	21 h	-0.7 V vs. RHE	53.6 mA mg ⁻¹	92.1%	Ni-N
Ni-SA-NCs ¹⁹⁶	0.5 M KHCO ₃	9 h	-1.0 V vs. RHE	~-50	99%	Ni-N ₄
NiSA-NGA-900 ¹⁹⁷	0.5 M KHCO3	6 h	-0.8 V vs. RHE	-5	90.2%	Unsaturated Ni-
						N sites
Ni-N-C ¹⁹⁸	0.1 M KHCO ₃	10 h	-0.75 V vs. RHE	-7.51(pcd)	97%	Edge-hosted Ni-
						N ₂₊₂
Ni(NC) ¹⁹⁹	0.5 M KHCO ₃	20 h	-0.75 V vs. RHE	^m _9	99%	Low-valent Ni-
						N motifs
Ni-N-C ²⁰⁰	0.5 M KHCO ₃	22 h	-0.9 V vs. RHE	^m -10	91.2%	Single Ni atoms
Ni/N-CHS ²⁰¹	0.5 M KHCO ₃	15 h	-0.9 V vs. RHE	-15	93.1%	N-C
NC-CNTs (Ni) ²⁰²	0.1 M KHCO3	10 h	-0.8 V vs. RHE	^m _7	>90%	Ni@N ₃
						(pyrrolic) sites
SANi-GO ²⁰³	0.5 M KHCO ₃	50 h	-0.63 V vs. RHE	-8.3(pcd)	96.6%	Ni-N ₄
NiSA-NWC ²⁰⁴	0.1 M KHCO3	2 h	-1.6 V vs. Ag/AgCl	^m -5	95%	Ni ⁺
Ni@NCNTs ²⁰⁵	0.5 M KHCO3	20 h	-0.8 V vs. RHE	-8.01(pcd)	99.1%	Confined Ni
						NPs
Ni@NC-900 ²⁰⁶	0.1 M KHCO3	50 h	-1.0 V vs. RHE	-17(pcd)	96%	-
Ni-NPC/CMTs ²⁰⁷	0.5 M KHCO ₃	48 h	-0.77 V vs. RHE	-11.2	94%	Ni-N _x and

						pyridine N
Ni-N-OMMCs ²⁰⁸	0.1 M KHCO ₃	25 h	-0.7 V vs. RHE	^m -1.5	98%	-
Ni SAC ²⁰⁹	0.5 M KHCO ₃	8 h	-0.6 V vs. RHE	-15	95.2%	Atomic Ni-N
						sites
Ni-/N-C ²¹⁰	0.5 M KHCO ₃	36 h	-0.61 V vs. RHE	^m -9	97.5%	-
NiN _x CNT ²¹¹	0.5 M KHCO ₃	44 h	-0.676 V vs. RHE	-9(pcd)	98%	Ni-N _x
Zn-N-C ²¹²	0.5 M KHCO3	15 h	-0.5 V vs. RHE	^m -3.9	90.8%	Zn-N _x
ZIF-Fe-CNT-FA-p ²¹³	0.1 M NaHCO ₃	-	-0.56 V vs. RHE	-1.9 (pcd)	97%	pyridinic N and
						Fe-N _x
C-AFC©ZIF-8 ²¹⁴	1.0 M KHCO ₃	-	-0.43 V vs. RHE	^m -4.8	93%	Fe-N
AD-Sn/N-C1000 ²¹⁵	0.1 M KHCO ₃	24 h	-0.6 V vs. RHE	-1.75 (pcd)	91%	Sn species and
						pyridinic N
Single Ni sites ²¹⁶	0.5 M KHCO ₃	60 h	-1.0 V vs. RHE	-7.37 (pcd)	~71%	sigle Ni sites
Co-N ₂ ²¹⁷	0.5 M KHCO ₃	60 h	-0.63 vs. RHE	-18.1	93%	Co-N ₂ site
Co-N ₅ /HNPCSs ²¹⁸	0.2 M KHCO ₃	10 h	-0.73 vs. RHE	-4.5 (pcd)	99.2%	Co-N ₅ site
Co ₁ -N ₄ ²¹⁹	0.1 M KHCO ₃	10 h	-0.8 vs. RHE	-15.7	82%	Co ₁ -N ₄
CoSA/HCNFs ²²⁰	0.1 M KHCO ₃	50 h	-0.9 vs. RHE	-67(pcd)	91%	Co single-atoms
A-Ni-NG ²²¹	0.5 M KHCO ₃	100 h	-0.61 vs. RHE	-22 (pcd)	97%	Ni(I) atom
						center
Ni-NCB ²²²	0.5 M	24 h	-0.66 vs. RHE	^m -25	99%	Ni SAs
	KHCO ₃ (flow					
	cell)					
NiSA-N-CNTs ²²³	0.5 M KHCO ₃	12 h	-0.7 vs. RHE	-23.5 (pcd)	91%	Ni single-atom
Unsaturated Ni-N	1.0 M KHCO ₃	12 h	-0.63 vs. RHE	^m -25	97.8%	Unsaturated Ni-
doped porous						N sites
carbon ²²⁴						
NiSA/PCFM ²²⁵	0.5 M KHCO ₃	120 h	-1.0 vs. RHE	-308.4(pcd)	88%	Ni single atoms
Cu-N ₂ /GN ²²⁶	0.1 M KHCO ₃	10 h	-0.5 vs. RHE	^m -1	81%	Cu-N ₂
ZnN ₄ -based single-	0.5 M KHCO ₃	>75 h	-0.43 vs. RHE	-24.8	95%	ZnN ₄

atom ²²⁷						
ZIF-8 ²²⁸	$0.25\ M\ K_2SO_4$		-1.1 V vs. RHE	-6.9 (pcd)	81%	imidazolate
						ligands
						coordinated
						Zn(II) center
Ni ²⁺ @NG ²²⁹	0.5 M KHCO ₃	-	-0.68 V vs. RHE	-10.2	92%	Ni ²⁺ @NG
CNT@f-NiNC ²³⁰	0.5 M KHCO ₃	10 h	-0.6V vs. RHE	~-(4.5±0.5)	80±3%	-
Ni-NC SAC ²³¹	0.5 M KHCO ₃	-	-0.85V vs. RHE	-30(pcd)	89%	Ni-based active
						sites
Ni/NC_950 ²³²	0.1 M KHCO ₃	9 h	-0.8 V vs. RHE	^m -4	92.3%	Ni sites
Ni-PACN ²³³	0.1 M KHCO ₃	-	-0.8 V vs. RHE	-14(pcd)	>95%	Pyrrolic
						coordinated-Ni
						atoms
Ni-TAPc ²³⁴	0.5 M KHCO ₃	100 h	-0.65V vs. RHE	-17.5	99%	Ni ⁺
Sb-NC ²³⁵	0.1 M KHCO ₃	24 h	-0.9 V vs. RHE	-2.9	82%	Site sites and
						pyridinic N
SE-Ni SAS@PNC ²³⁶	0.5 M KHCO ₃	60 h	-1.0 V vs. RHE	-18.3	87.8%	single Ni sites
						and porous NC
(Cl, N)-Mn/G ²³⁷	0.5 M KHCO ₃	12 h	-0.6 V vs. RHE	-10	97%	Modified Mn
						sites
Bi-N4 ²³⁸	0.1 M NaHCO ₃	4 h	-0.5 V vs. RHE	-5.1	97%	Bi-N ₄
Pd-NC ²³⁹	0.5 M NaHCO ₃	3.5 h	-0.5 V vs. RHE	^m -0.55	55%	Pd-N ₄
Y ₁ /NC ²⁴⁰	0.5 M KHCO ₃	12 h	-0.68 V vs. RHE	^m -0.2	88.3%	Y SACs
Sc_1/NC^{240}	0.5 M KHCO ₃	12 h	-0.68 V vs. RHE	^m -0.18	81.3%	Sc SACs
Ag_2/G^{241}	0.5 M KHCO ₃	> 36 h	-0.7 V vs. RHE	-11.87	93.4%	AgN ₃ - AgN ₃
Cu-APC/Pd ₁₀ Te ₃ ²⁴²	0.2 M KHCO ₃	3 h	-0.78 V vs. RHE	-8.6 (pcd)	92%	$Cu_1{}^0\text{-}Cu_1{}^{x+}$
ZrO ₂ /N-C ²⁴³	0.5 M KHCO ₃	5 h	-0.4 V vs. RHE	-2.6	64%	ZrO ₂ NPs
Co ₃ O ₄ -CDots-C ₃ N ₄ ²⁴⁴	0.5 M KHCO ₃	30 h	-0.6 V vs. RHE	^m -1.3	89%	C_3N_4
CoPc/CNT(3.5%) ²⁴⁵	0.1 M KHCO ₃	1 h	-0.63 V vs. RHE	-10	92%	-
Ni-NC_ATPA@C ²⁴⁶	0.5 M KHCO ₃	24 h	-0.7 V vs. RHE	-6	~93%	Ni nanoparticles

						and N doping
CoPc-CN/CNT	0.1 M KHCO ₃	1 h	-0.63 V vs. RHE	-15	98%	CNT and cyano-
(3.5%) ²³²						group
CoFPC/C ²⁴⁷	0.5 M NaHCO ₃	-	-0.8 V vs. RHE	^m -4.3	93%	CoFPC
FeOx/FePc ²⁴⁸	0.5 M KHCO ₃	2 h	-0.40 V vs. RHE	^m -4.0	93.0±4.8	in situ formed
					%	FeO _X /E-FePc
CoTPP-CNT ²⁴⁹	0.5 M KHCO ₃	4 h	-1.35 V vs. SCE	-3.2	91%	CoTPP
FeTPP-WSCAT ²⁵⁰	0.1 M KCl + 0.5		-0.52V vs. RHE	^m -1.0	ca.92%	-
	M KHCO ₃					
FePGF/CFP ²⁵¹	0.1 M KHCO3	10 h	-0.54 V vs. RHE	-1.68	98.7%	FePGF
CATpyr ²⁵²	0.5 M KHCO ₃	12 h	-0.59 V vs. RHE	^m -0.24	93%	-
[Co(qpy)] ²⁺ /CNT ²⁵³	0.5 M NaHCO ₃	4.5 h	-0.45 V vs. RHE	-19.9	100%	[Co(qpy)] ²⁺
FePGH-H ²⁵⁴	0.1 M KHCO ₃	20 h	-0.39 V vs. RHE	-0.42	96.2	FeTMAP
NiPor-CTF ²⁵⁵	0.5 M KHCO ₃	20 h	-0.9 V vs. RHE	~-52.9	97%	NiN ₄
CoPc@Fe-N-C ²⁵⁶	0.5 M KOH(flow	20 h	-0.84 V vs. RHE	-(275.6 ±	>90%	CoPc
	cell)			27.0)(pcd)		
(CoPc+Phenol)GDE ²⁵	0.5 M	100 h	2.52 V	200	88%	CoPc and
7	KHCO ₃ (flow					Phenol
	cell)					
Co ^{II} Pc-tsGQwire ²⁵⁸	0.5 M [Bmim]Tf	-	-2.1 V vs. Ag/Ag ⁺	-11.5	82.4%	-
Co ^{II} Pc-tsGQwire ²⁵⁸	0.5 M [Bmim]Tf	-	-2.1 V vs. Ag/Ag ⁺	-11.5	82.4%	-
Co ^{ll} Pc-tsGQwire ²⁵⁸	0.5 M [Bmim]Tf 2 N MeCN	-	-2.1 V vs. Ag/Ag ⁺	-11.5	82.4%	-
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO ₃	- 3 h	-2.1 V vs. Ag/Ag+	-11.5	82.4% 90%	- CTF
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO ₃ 0.1 M KHCO ₃	- 3 h 10 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE	-11.5 ^m -1 m_3	82.4% 90% 90.57	- CTF sp ² C atoms
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO ₃ 0.1 M KHCO ₃ 0.5 M NaHCO ₃	- 3 h 10 h 12 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1	82.4% 90% 90.57 98.3%	- CTF sp ² C atoms CoPP
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶²	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO ₃ 0.1 M KHCO ₃ 0.5 M NaHCO ₃ 0.05 K ₂ CO ₃	- 3 h 10 h 12 h 5 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5	82.4% 90% 90.57 98.3% 95%	- CTF sp ² C atoms CoPP -
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶² POM-MnL ²⁶³	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO3 0.1 M KHCO3 0.5 M NaHCO3 0.05 K ₂ CO3 0.5 M KHCO3	- 3 h 10 h 12 h 5 h 12 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE -0.72 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5 ^m -16	82.4% 90% 90.57 98.3% 95%	- CTF sp ² C atoms CoPP - MnL
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶² POM-MnL ²⁶³ Co@Pc/C ²⁶⁴	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO3 0.1 M KHCO3 0.5 M NaHCO3 0.05 K2CO3 0.5 M KHCO3 0.5 M KHCO3	- 3 h 10 h 12 h 5 h 12 h 20 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE -0.72 V vs. RHE -0.9 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5 ^m -16 -28(pcd)	82.4% 90% 90.57 98.3% 95% 95% 84%	- CTF sp ² C atoms CoPP - MnL Pyridinic N and
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶² POM-MnL ²⁶³ Co@Pc/C ²⁶⁴	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO ₃ 0.1 M KHCO ₃ 0.5 M NaHCO ₃ 0.5 K ₂ CO ₃ 0.5 M KHCO ₃ 0.5 M KHCO ₃	- 3 h 10 h 12 h 5 h 12 h 20 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE -0.72 V vs. RHE -0.9 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5 ^m -16 -28(pcd)	 82.4% 90% 90.57 98.3% 95% 95% 84% 	- CTF sp ² C atoms CoPP - MnL Pyridinic N and Co NPs
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶² POM-MnL ²⁶³ Co@Pc/C ²⁶⁴	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO3 0.1 M KHCO3 0.5 M NaHCO3 0.05 K ₂ CO3 0.5 M KHCO3 0.5 M KHCO3	- 3 h 10 h 12 h 5 h 12 h 20 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE -0.72 V vs. RHE -0.9 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5 ^m -16 -28(pcd) -1.84(pcd)	 82.4% 90% 90.57 98.3% 95% 95% 84% 91.3% 	- CTF sp ² C atoms CoPP - MnL Pyridinic N and Co NPs TTF and Co
Co ^{II} Pc-tsGQwire ²⁵⁸ Ni-CTF ²⁵⁹ ZIF-A-LD ²⁶⁰ CoPP@CNT ²⁶¹ CoPc-Pyr ²⁶² POM-MnL ²⁶³ Co@Pc/C ²⁶⁴	0.5 M [Bmim]Tf 2 N MeCN 0.1 M KHCO3 0.1 M KHCO3 0.5 M NaHCO3 0.5 K2CO3 0.5 M KHCO3 0.5 M KHCO3	- 3 h 10 h 12 h 5 h 12 h 20 h	-2.1 V vs. Ag/Ag ⁺ -0.8 V vs. RHE -1.0 V vs. RHE -0.6 V vs. RHE -0.7 V vs. RHE -0.72 V vs. RHE -0.9 V vs. RHE	-11.5 ^m -1 ^m -3 -25.1 -2.5 ^m -16 -28(pcd) -1.84(pcd)	 82.4% 90% 90.57 98.3% 95% 95% 84% 91.3% 	- CTF sp ² C atoms CoPP - MnL Pyridinic N and Co NPs TTF and Co porphyrin

Catalysts	Electrolyte	Durabili	Potential	Current density	FE _{co}	Active sites
		ty test				
CNFs ²⁶⁶	EMIM-BF ₄	9 h	-0.573 vs. SHE	^m -3.5	98%	reduced carbons
NCNT-3-700 ²⁶⁷	0.5 M NaHCO ₃	60 h	-0.9V vs. RHE	-5 (pcd)	90%	quaternary N
3-DN-doped	0.1 M KHCO3	5 h	-0.58V vs. RHE	-1.82	85%	pyridinic N
graphene foam ²⁶⁸						
Nano N-doped	0.1 M KHCO ₃	10 h	-0.8 V vs. RHE	-0.75	80%	pyridinic N
CNT ²⁶⁹						
NCNTs-ACN-850 ²⁷⁰	0.1 M KHCO3	-	-1.05 V vs. RHE	-	80%	pyridinic N
Nitrogen-doped	1 M KCl	-	-1.46 V vs. Ag/AgCl	-29.2 A/g	98%	doped-N
carbon ²⁷¹						
2D-pg-C ₃ N ₄ ²⁷²	2 M KHCO ₃	35000s	-1.1V vs. Ag/AgCl	-3	80%	Polarized
						melem subunits
NDC-700 ²⁷³	0.5 M NaHCO ₃	72 h	-0.82 V vs. RHE	-6.6 (pcd)	83.70%	pyridinic N
ZIF-CNT-FA-p ²¹³	0.1 M NaHCO ₃	-	-0.66 V vs. RHE	-1.8 (pcd)	97%	pyridinic N
ZIF-CNT-FA-p ²¹³	0.1 M NaHCO ₃	-	-0.86 V vs. RHE	-7.7 (pcd)	100%	pyridinic N
H-CNT ²⁷⁴	0.1 M KHCO3	24000s	-0.5 V vs. RHE	^m -0.5	88%	pyrrolic
						nitrogen
NC-900 ²⁷⁵	0.1 M KHCO3	2 h	-0.93 V vs. RHE	-1.1 (pcd)	78%	pyridinic N and
						quaternary N
F interlayer doped	0.1 M NaClO ₄	-	-0.62 vs. RHE	^m -0.2 (pcd)	89.6%	doped F
carbon (FC) ²⁷⁶						
NF-C-950 ²⁷⁷	0.1 M KHCO ₃	40 h	-0.6 vs. RHE	-1.9	90%	Co-doped F and
						Ν
F-CPC ²⁷⁸	0.5 M KHCO ₃	12 h	-1.0 vs. RHE	-37.5	88.3%	Cagelike
						structure
N-GRW ²⁷⁹	0.5 M KHCO ₃	10 h	-0.6 vs. RHE	-15.4 A g _{catalyst} ⁻¹	87.6%	pyridinic N
thermally-treated	0.5 M KHCO3	12 h	-0.68 vs. RHE	-1.2 (pcd)	82%	pyridinic N

Table 7. CO₂RR performance of non-metal carbons with CO as the main product

triazine-based

framework280

MNC-D ²⁸¹	0.1 M KHCO ₃	16 h	-0.58 vs. RHE	-6.8	92%	Pyridinic N and
						defects
CNPC-1100 ²⁸²	0.1 M KHCO3	8 h	-0.6 vs. RHE	-1.0	92%	N defects
NCNTs ²⁸³	0.5 M NaHCO ₃	40 h	-0.8 vs. RHE	-20.2	95%	Pyridinic N
						defects
OA-PCN ²⁸⁴	0.5 M NaHCO ₃	24 h	-0.66 vs. RHE	^m -0.8	40.1%	-OH and –NH ₂
NS-C-900 ²⁸⁵	0.1 M KHCO ₃	20 h	-0.6 vs. RHE	-2.63	92%	Co-doped S and
						Ν
D-NC-1100 ²⁸⁶	0.1 M KHCO3	10 h	-0.6 vs. RHE	^m -0.8	94.5%	C defects
NC-900-HH ²⁸⁷	0.5 M NaHCO ₃	10 h	-0.5 vs. RHE	-0.4	90%	Pyridinic N
WNCNs-1000 ²⁸⁸	0.1 M KHCO ₃	8 h	-0.49 vs. RHE	^m -0.5	84%	Pyridinic N
Se-CNs ²⁸⁹	0.1 M KHCO ₃	19 h	-0.6 vs. RHE	m_9	90%	Doped Se
NC1100 ²⁹⁰	0.5 M KHCO ₃	20 h	-0.5 vs. RHE	m_1	95.4%	Pyridinic N
1D/2D NR/CS-900 ²⁹¹	0.5 M KHCO ₃	30 h	-0.45 vs. RHE	m_1	94.2%	Pyridinic N
NSHCF900 ²⁹²	0.1 M KHCO ₃	36 h	-0.7 V vs. RHE	-103	94%	Co-doped N and
						S
CPSN ²⁹³	0.1 M KHCO ₃	27 h	-0.99 V vs. RHE	^m -3.2	11.3%	pyridinic N
S, N, Cl doped C ²⁹⁴	0.1 M KHCO ₃	18 h	-0.6 vs. RHE	-1.98(pcd)	95.9%	Co-doped N and
						Cl
NSCNW-3 ²⁹⁵	0.1 M KHCO ₃	20 h	-0.6 vs. RHE	-5.93(pcd)	93.4%	3D structure and
						doped S
NS-CNSs ²⁹⁶	0.5 M KHCO ₃	20 h	-0.55 vs. RHE	^m -2.4(pcd)	85.4%	Co-doped N and
						S
NPCA ²⁹⁷	0.5 M	24 h	2.4 V vs. Ag/Ag ⁺	-143.6(pcd)	99.1%	Co-doped P and
	[Bmim]PF ₆ /MeCN					Ν
Silkcocoon derived	0.1 M KHCO ₃	10 days	-1.09 vs. RHE	-0.8(pcd)	89%	Pentagon-
carbons ²⁹⁸						containing

						defects
NDC-4 ²⁹⁹	0.1 M KHCO ₃	-	-1.1 vs. RHE	-	82%	Doped N
DHPC ³⁰⁰	0.5 M KHCO ₃	25 h	-0.5 vs. RHE	^m -1.2	99.5%	Mesoporous and
						carbon defect
						structure
NPC ³⁰¹	0.5 M KHCO ₃	18 h	-0.55 vs. RHE	-3.01	98.4%	Pyridinic and
						graphitic N

Catalysts	Electrolyte	Durability	Potential	Current	FE	Reference
		test		density/ mA		
				cm ⁻²		
Sn NPs/GDL	0.5 M NaHCO ₃	-	-1.6 V vs. NHE	-27	70%	302
Sn/GDE	0.5 M KHCO ₃	-	-1.8 V vs. Ag/AgCl	-17.43±2.6	78.60±0.11%	303
Sn(100	0.5 M KHCO ₃	-	-1.6 V vs. SCE	^m -7.5	~80%	304
nm)/GDE						
Sn quantum	0.1 M NaHCO ₃	50 h	-1.8 V vs. SCE	-21.1	89%	305
sheets confined						
in graphene						
Sn metal	[Bimim]PF ₆ (30wt	-	-2.3 V vs. Ag/Ag ⁺	-32	92%	306
electrodes	%)/acetonitrile/H ₂ O					
	(5wt%)					
5nm reduced	0.1 M NaHCO ₃	-	-1.8 V vs. SCE	-10.2	86.2%	307
SnO_2						
NPs/graphene						
5nm SnO ₂ /C	0.1 M KHCO3	12 h	-0.9V vs. RHE	^m -4	54.2%	308
Ultra-small	1 M KHCO ₃	-	-1.21V vs. RHE	-145	64%	309
SnO ₂						
Sn-OH-5.9	1 M KHCO ₃	60 h	-1.8 V vs. Ag/AgCl	^m -17	82.5%	310
Ov-N-SnO ₂	0.1 M KHCO3	12 h	-1.7V vs. SCE	^m -4.2	88%	311
Sn@MJKTs	0.5 M KHCO ₃	5 h	-0.9 V vs. RHE	-19.9	94%	312
Sn/CNT-	0.5 M KHCO ₃	2000 s	-0.96 V vs. RHE	-26.7	82.7%	313
Agls/CC						
Sn/SnS ₂ /rGO	0.5 M NaHCO ₃	14h	-1.4 V vs. Ag/AgCl	-11.75 (pcd)	84.5%	314
SnO ₂ @n-pc	0.5 M [Bmim]PF ₆	5 h	-2.2 V vs. Ag/Ag ⁺	-28.4	94.1%	315
SL-NG@Sn foil	0.5 M KHCO ₃	5 h	-1.0 V vs. RHE	-21.3(pcd)	92%	316
CNT#SnO ₂ DSs	0.1 M KHCO ₃	10 h	-0.9 V vs. RHE	^m -4	70%	317

Table 8. CO₂RR performance of catalysts with HCOOH/HCOO⁻ as the main product

electrodeposited	0.1 M KHCO ₃	-	-1.4 V vs. SCE	-0.75	91.7%	318
Sn						
Sn/SnO _x thin-	0.5 M NaHCO ₃	-	-0.7 V vs. RHE	-(0.4-0.6)	19.0%	319
film						
Commercial Sn	Catholyte-free	48 h	2.2 V (cell voltage)	-51.7	93.3%	320
NPs						
SnO _x /Sn	0.1 M KHCO ₃	-	1.2 V	^m -3.0	64.0%	321
Sn/SnO _x	0.1 M KHCO ₃	12 h	-1.2 V vs. RHE	-11.2	89.6%	322
SnO ₂ /0.14@N-	0.5 M NaHCO ₃	20 h	-0.8 vs. RHE	-21.3	78±2%	323
rGO						
Sigle-atom Sn^{δ^+}	0.25 M KHCO ₃	200 h	-1.0 vs. SCE	^m -11.8	74.3%	324
on N-doped						
graphene						
V _O -SnO _x /CF-40	0.1 M KHCO ₃	12 h	-1.0 vs. RHE	-36	86%	325
Sn dendrites	0.1 M KHCO ₃	-	-1.36 V vs. RHE	-17.1	71.60%	326
Dendritic Sn/Cu	0.5 M KHCO ₃	20 h	-0.95 V vs. RHE	^m -13	67.3%	327
Sn-pNWs	0.1 M KHCO ₃	15 h	-0.8 V vs. RHE	^m -5.5	80.0%	328
Mesoporous	0.1 M KHCO ₃	-	-1.15 V vs. RHE	-10.8	75%	329
SnO_2						
Porous Sn foam	0.1 M KHCO ₃	55 h	-1.6 V vs. Ag/AgCl	^m -6	95.6%	330
SnO _x -300	0.5 M KHCO ₃	18 h	-0.98 V vs. RHE	-15(pcd)	88.6%	331
mp-SnO ₂	0.5 M NaHCO ₃	12 h	-0.9 V vs. RHE	^m -14(pcd)	83%	332
SnO ₂ QWs	0.1 M KHCO ₃	25000 s	-1.156 V vs. RHE	-13.7	87.3%	333
SnO ₂ -NFs	0.5 M KHCO ₃	12 h	-1.0 V vs. RHE	-9.4(pcd)	82.1%	334
SnO ₂ /CC	0.5 M NaHCO ₃	24 h	-0.8 V vs. RHE	-45(pcd)	87±2%	335
SnOx@MWCN	0.5 M KHCO ₃	20 h	-1.25V vs. SHE	^m -9.5	77%	336
Т-СООН						
SnS ₂ /Aminated-	0.5 M KHCO ₃	15 h	-0.9 V vs. RHE	41.1(pcd)	92.6%	337
С						

SnO	0.1 M KHCO ₃	10 h	-1.2 V vs. RHE	-13.03	81.2%	338
2NC@EEG						
WIT SnO ₂	0.1 M KHCO3	14 h	-0.99 V vs. RHE	^m -6.1	63%	339
FSP-SnO ₂ -5	0.1 M KHCO3	-	-1.1V vs. RHE	-23.7	85%	340
5%Ni-SnS ₂	0.1 M KHCO3	8 h	-0.9 V vs. RHE	-19.6	80%	341
BiO _x modified	0.5 M KHCO ₃	10 h	-1.37 V vs. RHE	-45	90.8%	342
2D SnO _x						
SrSnO ₃ NWs	0.5 M NaHCO ₃	10 h	-1.3 V vs. RHE	-21.6(pcd)	77.6%	343
SnSe ₂ @CC	0.1 M KHCO3	10 h	-0.76 V vs. RHE	-12.0(pcd)	88.4%	344
SnO ₂ /PC	0.5 M KHCO ₃	10 h	-0.86 V vs. RHE	-29.0(pcd)	92%	345
SL-NG@Sn foil	0.5 M KHCO ₃	5 h	-10 V vs. RHE	-21.3(pcd)	92%	316
Cu/SnOx-CNT	0.1 M KHCO3	-	-0.99 V vs. RHE	-4.0(pcd)	77%	346
(30.2%)						
Cu@Sn	0.1 M KHCO ₃	10 h	-1.1 V vs. RHE	-57.7	90.4%	347
nanocones						
Cu@Sn	0.5 M KHCO ₃	15 h	-0.93 V vs. RHE	16.52	100%	348
electrodes						
Cu ₆ Sn ₅	0.1 M KHCO3	6 h	-1.17 V vs. RHE	^m -6	73%	125
Sn-Cu	0.1 KHCO ₃	12 h	-0.95 V vs. RHE	^m _7	92%	349
Cu ₃ Sn/Cu ₆ Sn ₅	0.1 NaHCO ₃	42 h	-1.0 V vs. RHE	-18.9	82%	350
CuSn NWs/C-	0.5 KHCO ₃	10 h	-1.0 V vs. RHE	-17.33(pcd)	90.2%	351
Air						
Cu ₍₁₎ Sn ₍₄₎ -N-CC	0.5 KHCO ₃	20 h	-0.97 V vs. RHE	-15.56(pcd)	90.24%	352
Mn-doped SnO ₂	0.1 KHCO ₃	28400 s	-1.03V vs. RHE	-21.2(pcd)	~85%	353
Cu ₃ NiOCs	0.5 KHCO ₃	25 h	-0.57 V vs. RHE	-10.9(pcd)	95.9%	354
Cu ₂ O/CuO/CuS	0.1 KHCO ₃	2.5 h	-0.7 V vs. RHE	-20(pcd)	84%	355
SW-	0.5 KHCO ₃	20 h	-0.64 V vs. RHE	-5.7(pcd)	98.2%	356
Cu ₂ O/Cu(60						
atm)						

AgSn/SnO _x	0.5 M NaHCO ₃	25 h	-0.8 V vs. RHE	-16(pcd)	87.2%	357
core-shell						
Ag-SnS ₂	0.5 KHCO ₃	10 h	-1.0 V vs. RHE	-23.3(pcd)	60.0%	358
SnO _x /AgO _x	0.1 M KHCO ₃	20 h	-0.8 V vs. RHE	^m -3.5(pcd)	21.1%	359
Cu-Sn/rGO	0.5 M NaHCO ₃	6 h	-0.99 V vs. RHE	-23.6	87.4%	360
CuSn ₃	0.1 M KHCO ₃	50 h	-0.5V vs. RHE	-33	95%	361
Bi-Sn	0.5 M KHCO ₃	100 h	-1.14 V vs. RHE	^m -55(pcd)	94±2%	362
CdCu@Cu	0.5 M NaHCO ₃	12 h	-1.05 V vs. RHE	-30.5(pcd)	70.5%	363
TNS-2.0-SnO ₂	0.1 M KHCO ₃	18 h	-1.6 V vs. RHE	-22.5	73%	364
SnO _x /Ag	0.1 M KHCO ₃	12 h	-1.0 V vs. RHE	^m -7.5	83%	84
GDE-In/C	0.1 M Na ₂ SO ₄	15 h	-1.65 V vs. Ag/AgCl	^m -8.5	45%	365
Pb	0.1 M K ₂ CO ₃	-	-1.5 V vs. SCE	-4.4	95%	366
Pb cubic	0.1 M KHCO ₃	-	-1.7 V vs. Ag/AgCl	-25	94.1%(278K)	367
roughed Pb	0.1 M KHCO3	-	-0.96 V vs. RHE	-1.17(pcd)	88%	368
OD-Pb	0.5 M NaHCO ₃	4.5 h	-0.7 V vs. RHE	-4.6	~90	369
Pb meltal	[Bimim]PF ₆ (30wt	6 h	-2.3 V vs. Ag/Ag ⁺	-37	91.6	306
electrodes	%)/acetonitrile/H ₂ O					
	(5wt%)					
Pb-PhyA	[Bzmim]BF ₆ (12.8w	5 h	-2.25 V vs. Ag/Ag ⁺	-30.5	92.7%	370
	t%)/ H ₂ O(9.9wt%)					
Porous Pb	1.0 M KHCO ₃	6 h	-0.99 V vs. RHE	-7.5 (pcd)	97%	371
Pb QDDCs	0.5 M KHCO ₃	80 h	-0.2 V vs. RHE	-16	95%	10
SD-Pb	1.0 M KHCO3	2 h	-1.08 V vs. RHE	-12 (pcd)	88%	372
SELF-CAT-Pb	KHCO3	6 h	-1.2 V vs. RHE	-22 (pcd)	90.5%	373
FD-	0.5 M KHCO ₃	10 h	-1.7 V vs. Ag/AgCl	-28	84.6%	374
PbNP/MWCNT/						
СРЕ						
PbS-150/C	0.1 M KHCO3	10 h	-1.2 V vs. RHE	-(52.2 ± 5.2)	97.6 ± 5.3%	375
				mA mg ⁻¹		

Pb _{2.25} Pd _{3.75}	0.5 M HCOOK	-	-1.5 V vs. Ag/AgCl	-5.6 (pcd)	85%	376
4-	1 M KHCO ₃	11 h	-1.09 V vs. RHE	-9.0	>90%	375
aminomethylben						
zene modified						
Pb						
Bi dendrite	0.5 M KHCO ₃	12 h	-0.74 V vs. RHE	-2.7	89%	377
Bi dendrite	0.5 M KHCO ₃	-	-1.26 V vs. RHE	-68.51 ±4.04	~100%	378
				(pcd)		
Bi nanoflack	0.1 M KHCO3	10 h	-0.60 V vs. RHE	^m -1.0	~100%	379
BiO _x /C	0.5 M NaHCO ₃ /0.5	-	-1.37 V vs. Ag/AgCl	^m -1.3	93.4%	380
	M NaClO ₄					
Bi/GDE	0.5M KHCO3	20 h	-1.45 V vs. SCE	-1.5 (pcd)	90%	381
BiOI derived Bi	0.5M NaHCO ₃	10 h	-1.5 V vs. SCE	-15~16	~95%	382
nanosheets						
Bi ₅ O ₇ I	0.5 M KHCO ₃	18 h	-0.89 vs. RHE	-13.2 (pcd)	89%	383
BiOBr derived	0.1 M KHCO ₃	65 h	-0.9 vs. RHE	^m -70	>90%	384
2D Bi						
BiOBr derived	2.0 M KHCO ₃	-	-	-200	90%	384
2D Bi						
Bi	0.5M NaHCO ₃	5 h	-1.0 V vs. RHE	^m -13	>90%	385
nanosheets(~10n						
m)						
Defect-rich Bi	0.5M NaHCO ₃	24 h	-0.75 V vs. RHE	^m -5	84%	386
derived from						
Bi_2S_3						
Bi ₂ O ₂ CO ₃	0.5M NaHCO ₃	12 h	-0.7 V vs. RHE	-11	85%	387
nanosheets						
Bi ₂ O ₂ CO ₃	0.1 M KHCO ₃	100 h	-0.8 V vs. RHE	^m -6	95%	388
derived Bi						

nanosheets						
Bi-based	0.5 M KHCO ₃	7 h	-1.0 V vs. RHE	-40	>90%	389
catalysts						
Oxide	0.5M NaHCO ₃	10 h	-0.86 V vs. RHE	-30 (pcd)	$93 \pm 2\%$	390
containing Bi						
nanosheets						
Bi_2S_3 derived Bi	0.5M NaHCO ₃	24 h	-0.75 V vs. RHE	-5	84%	386
Bi nanotubes	0.5M KHCO ₃	10 h	-1.0 V vs. RHE	-24	~95%	5
Bi ₂ O ₃ derived	0.1M KHCO ₃	48 h	-0.82V vs. RHE	~-36	~98-100%	391
nanotubes						
Bi ₂ O ₃	0.1M KHCO ₃	12 h	-0.956 V vs. RHE	~-6	~76.3%	392
NSs@MCCM						
Bi nanostructure	0.5M KHCO ₃	30 h	-0.9 V vs. RHE	~-13	90.74%	393
Bi ₂ O ₃ -NGQDs	0.5M KHCO ₃	15 h	-1.2 V vs. RHE	-29.4 (pcd)	>90%	394
Bi ₂ O ₃ /NCF	0.5M KHCO ₃	24 h	-1.0 V vs. RHE	^m -15	94%	395
f-Bi ₂ O ₃ /CNF	0.1 M KHCO ₃	-	-1.2 V vs. RHE	-20.9	87%	396
Bi ₂ O ₃ @C-800	1M KOH(flow cell)	6 h	-0.9 V vs. RHE	~-150	>93%	397
Bi ₂ S ₃ -	0.1M KHCO ₃	24 h	-0.9 V vs. RHE	^m -3.5	>90%	398
Bi ₂ O ₃ @rGO						
Bi spheres	0.5M KHCO ₃	24 h	-0.9 V vs. RHE	~-8	91%	399
Bi nanosheets	0.5M KHCO ₃	17 h	-0.97 V vs. RHE	-25	92.5%	400
Bismuthene@B	0.5M KHCO ₃	>75 h	-0.58 V vs. RHE	^m -16	~99%	401
Р						
Bi/rGO	0.1 M KHCO ₃	15 h	-0.8 V vs. RHE	^m -2	98%	402
Bi/Gr	0.5M KHCO ₃	30 h	-0.97 V vs. RHE	^m -20	92.1%	403
Bi@NPC	0.1 M KHCO3	20 h	-1.5 V vs. SCE	-14.4 (pcd)	92%	404
Cu	0.5M NaHCO ₃	12 h	-0.69 V vs. RHE	-~15 (pcd)	95%	405
foam@BiNW						
CuBi	0.5M KHCO ₃	10 h	-1.0 V vs. RHE	^m -20	>80%	406

Cu-Bi	0.5M NaHCO ₃	6 h	-0.93 V vs. RHE	^m -4.5	95%	407
Ag-Bi-S-O	0.1 M KHCO ₃	12 h	-0.7 V vs. RHE	-12.52 (pcd)	94.3%	408
decorated Bi						
Bi decorated Sn	0.5M KHCO ₃	100 h	-1.1 V vs. RHE	^m -55(pcd)	96%	362
nanosheets						
Bi doped SnO	0.1 M KHCO3		-1.7 V vs. Ag/AgCl	-12	93%	409
nanosheets						
Bi-MWCNT-	0.5 M KHCO ₃	12 h	-0.76 V vs. RHE	-6~7	91.7%	410
COOH/Cu						
Bi(btb)	0.5 M KHCO ₃	32 h	-0.97 V vs. RHE	-5.44	95.3%	411
Pd70Pt30/C	0.1 M KH ₂ PO ₄ /0.1	-	-0.4 V vs. RHE	-5	88%	412
	M K ₂ HPO ₄					
branched Pd	0.5 M KHCO ₃	-	-0.2 V vs. RHE	-22	97%	413
NPs						
Pd	0.1 M NaCl	-	-0.31 V vs. RHE	-15	89%	414
interconnected						
nanosheets						
Pd-B/C	0.1 M KHCO ₃	5 h	-0.5 V vs. RHE	^m -10	70%	415
Pd@Au (10nm	0.1 M Na ₂ SO ₄	-	-0.5 V vs. RHE	^m -0.2	25%	416
thick Pd shells)						
Pd/Cu ₂ O-Cu	0.5 M NaHCO ₃	3 h	-0.25 V vs. RHE	-4.2(pcd)	92%	417
NPs						
Co ₃ O ₄	0.1 M KHCO ₃	20 h	-0.88 V vs. SCE	-0.68	64.30%	418
CoO _x /Co	0.1 M Na ₂ SO ₄	40 h	-0.85 V vs. SCE	-10.59	90.1%	419
Vo-rich Co ₃ O ₄	0.1 M KHCO ₃	40 h	-0.87 V vs. SCE	-2.7	87.6%	420
CoO _x /ZrO ₂ -	0.1 M KHCO ₃	60 h	-0.35 V vs. RHE	-8.2	98.4%	421
graphite						
Dendritic In	0.5 M KHCO ₃	-	-0.86 V vs. SCE	-5.8	86%	422
foam						

3D hierarchical	0.1 M KHCO3	24 h	-1.2 V vs. RHE	-33	~90%	423
porous In						
O-InO _x	0.5 M NaHCO ₃	20 h	-0.8 V vs. RHE	-7.8	90.2%	424
S doped In	0.5 M KHCO ₃	10 h	-0.98 V vs. RHE	^m -60	93%	425
Flowerlike In ₂ S ₃	([Bmim][PF ₆])/me	10 h	-2.3 V vs. Ag/Ag ⁺	-25.6(pcd)	86%	426
	CN-H ₂ O					
In-In ₂ S ₃	0.1 M KHCO ₃	8 h	-1.0 V vs. RHE	^m -51	76%	427
In ₂ O ₃ -rGO	0.1 M KHCO ₃	10 h	-1.2 V vs. RHE	^m -22.5(pcd)	84.6%	428
In-TiO ₂	0.1 M KCl	-	-1.6 V vs. SCE	-	86%	429
Sb nanosheets	0.5 M NaHCO ₃	12 h	-1.06 V vs. RHE	^m -8	~84%	430
Cu-Zn alloys	0.1 M KHCO3	-	-1.0 V vs. Ag/AgCl	^m -0.5	71.1%	431
In-Sn alloy NPs	0.1 M KHCO ₃	12 h	-1.1 V vs. SCE	^m -7	78.6%	432
Sn _{56.3} Pb _{43.7}	0.5M KHCO ₃	2 h	-2.0 V vs. Ag/AgCl	-45.7(pcd)	79.8%	433
Cu-In(80 at%	0.1 M KHCO3	-	-1.0 V vs. RHE	^m -0.52(pcd)	62%	434
In)						
In(OH) ₃ -Cu ₂ O	0.1 M KHCO3	12 h	-0.8 V vs. RHE	^m -6.8(pcd)	90.37%	435
In-Zn NCs	0.5M KHCO ₃	2 h	-1.2 V vs. RHE	-22	95%	436
Coralline	0.1 M KHCO ₃	10 h	-1.0 V vs. RHE	18.3	91.8%	141
Ag ₆₅ Cu ₃₅						
Amorphous Cu	0.1 M KHCO ₃	12 h	-1.4 V vs. Ag/AgCl	^m -12	37%	437
NPs						
Cu fiber felt	0.1 M KHCO ₃	390 min	-1.1 V vs. RHE	^m -5	71.1±3.1%	438
Cu, Cd/Cu (300	0.5 M KHCO ₃	20000 s	-1.8 V vs. Ag/AgCl	-10.6	76.2%	439
nm)						
S-modified Cu	0.1 M KHCO ₃	-	-0.8 V vs. RHE	-28	80%	440
CuS _x	0.1 M KHCO ₃	-	-0.9 V vs. RHE	-9	75%	441
S-doped Cu ₂ O-	0.1 M KHCO3	12 h	-0.8 V vs. RHE	^m -11(pcd)	~75%	442
derived Cu						
S-doped Cu	0.1 M KHCO ₃	12 h	-0.9 V vs. RHE	-12.3(pcd)	76.5%	443

based catalyst						
Cu ₂ S	0.1 M NaHCO ₃	9 h	-0.9 V vs. RHE	-19.1(pcd)	87.3%	444
MOF-derived	[Bmim]PF ₆ (0.5	-	-1.85 V vs. Ag/Ag ⁺	-102.1	98.2%	445
Cu dendrites	M)/MeCN/H2O(1					
	M)					
Cu/Au	0.5 M KHCO ₃	4 h	-0.6 V vs. RHE	-10.4(pcd)	81%	446
G-Cu _x O-2h	0.5 M KHCO ₃	9 h	-0.8 V vs. RHE	-19.3	81%	447
MoP@In-PC	[Bmim]PF ₆ (30	6 h	-2.2 V vs. Ag/Ag ⁺	-43.8	96.5%	448
	wt%)/MeCN/H2O(
	5 wt%)					
Dendritic Cu	[Bimim]BF ₆ /H ₂ O	-	-1.55 V vs. Fc ⁺ /Fc	-6.5	83%	449
foam	(8wt%)					
Cu foam(60 s)	0.5 M NaHCO ₃	-	-1.5 V vs. Ag/AgCl	-10	37%	450
Cu _x O/Cu	0.5 M KHCO ₃	20 h	-1.1 V vs. SCE	-10	~62%	451
Cu nanoflower	0.1 M KHCO ₃	9 h	-1.0 V vs. RHE	-21	26%	452
Cu ₂ O/Cu@NC-	1 M KHCO ₃	30 h	-0.68 V vs. RHE	-4.4	70.5%	453
800						
CuO STNW	0.5 M KHCO ₃	7200 s	-1.2 V vs. Ag/AgCl	-6	m55%	454
(7nm)Cu/p-NG	0.5 M KHCO ₃	12 h	-0.90 V vs. RHE	-7.7A/g	65%	455
Pt-	0.1 M KHCO ₃	30 h	-0.50 V vs. RHE	-40	91%	456
NPs@NCNFs@						
СС						
HNCM/CNT	0.1 M KHCO ₃	35 h	-0.80 V vs. RHE	^m -2.15	81%	457
PEI-NCNT	0.1 M KHCO ₃	24 h	-1.8 V vs. SCE	-7.2	85%	458
Nitrogen-doped	0.5 M KHCO ₃	12 h	-0.84 V vs. RHE	-7.5	73%	459
graphenes						
Boron-doped	0.1 M KHCO3	-	-1.4 V vs. SCE	^m -2.25	66%	460
graphene						
Boron-doped	0.5 M KCl	24 h	^m -2.3 V vs. Ag/AgCl	-2	94.7%	461

diamond (BDD)						
BCN-40	0.1 M KHCO ₃	-	-0.3 V vs. RHE	^m -0.36	83.5%	462
N-C61-800	0.5 M KHCO ₃		-0.9 V vs. RHE	^m -11(pcd)	91.2%	463
Activated wood	0.5 M KHCO ₃	24 h	-1.8 V vs. SCE	-53.8	70.8%	464

		-			-		
Catalysts	Electrolyte	Durability	Potential	Current	Products	FE	Reference
		test		density/ mA			
				cm ⁻²			
Mo electrode	0.2 M Na ₂ SO ₄	-	-0.8 V vs. SCE	-0.12	CH ₃ OH	84%	465
RuO ₂ +TiO ₂	$0.05 \text{ M H}_2\text{SO}_4$	-	-0.9 V vs. Hg ₂ SO ₄	-0.52	CH ₃ OH	24%	466
(35+65 m/o)							
Ru	0.5 M NaHCO ₃	8 h	-0.8 V vs. SCE	^m -0.055	CH ₃ OH	17.2	467
Cu atom	0.5 M NaHCO ₃	8 h	-0.8 V vs. SCE	^m -0.045	CH ₃ OH	41.3%	344
modified Ru							
Cu ₂ O	0.5 M KHCO ₃	-	-1.1 V vs. SCE	-	CH ₃ OH	38%	468
20% Cu (3-60	0.5 M NaHCO ₃	6000 s	-1.7 V vs. SCE	^m -16	CH ₃ OH	38.5%	469
nm)/CNT							
Cd atom	0.5 M NaHCO ₃	8 h	-0.8 V vs. SCE	^m -0.05	CH ₃ OH	38.2%	344
modified Ru							
RuO ₂ /B-doped	0.4 M Britton-	-	-0.8 V vs. SCE	^m -0.65	CH ₃ OH	8.12%	470
diamond	Robinson solution						
[PYD]@Cu-Pt	0.5 KCl	22 h	-0.6 V vs. SCE	-22	CH ₃ OH	37%	471
V-doped In ₂ O ₃	0.1 M KHCO3		-0.83V vs. RHE	^m -2	CH ₃ OH	15.8%	472
NCs							
RuO ₂ /TiO ₂	0.5 M NaHCO ₃	-	-0.8 V vs. SCE	^m -1.05	CH ₃ OH	60.50%	473
NTs/Pt							
RuO ₂ /TiO ₂	0.5 M NaHCO ₃	-	-0.8 V vs. SCE	-0.45	CH ₃ OH	40.20%	345
NPs/Pt							
[PYD]@Pd	0.5 M KCl	15 h	-0.6 V vs. SCE	^m -30	CH ₃ OH	35%	474
Pd-Cu bimetallic	25 mol%	24 h	-2.1 V vs. Ag/Ag ⁺	^m -31.8	CH ₃ OH	80.0%	475
aerogel	[Bimim]BF ₆ / 75						
	mol % H ₂ O						
Mo-Bi BMC/CP	0.5 M	5 h	-0.7 V vs. SHE	-12.1	CH ₃ OH	71.2%	476

Table 9. CO₂RR performance over materials with alcohols as the main product

	[Bimim]BF ₆ /						
	MeCN						
Cu ₂ O _(OL-MH) /Ppy	0.5 M KHCO3	15 h	-0.85 V vs. RHE	^m -0.14	CH ₃ OH	93±1.2%	477
LT paper							
Cu _{1.63} Se(1/3)	[Bimim]PF ₆ (30wt		-2.1 V vs. Ag/Ag ⁺	-41.5	CH ₃ OH	77.6%	478
	%)/MeCN/H ₂ O(5						
	wt%)						
2-	0.1 M KNO3	20 h	-0.2 V vs. Ag/AgCl	-	CH ₃ OH	39%	479
pyridinethiol@Pt							
-Au NPs							
PD-Zn/Ag	0.1 M KHCO3	-	~-1.4 V vs. RHE	-2.7(pcd)	CH ₃ OH	10.5%	480
FeP NA/TM	0.5 M KHCO3	36 h	-0.2 V vs. RHE	^m -1.5	CH ₃ OH	80.2%	481
PD-Zn/Ag foam	0.1 M KHCO3	8 h	-1.38 V vs. RHE	-2.1(pcd)	CH ₃ OH	8.1%	481
Pt _x Zn/C	0.1 M NaHCO ₃	16 h	-0.9 V vs. RHE	^m -0.4	CH ₃ OH	81.4%	482
Cu _{63.9} Au _{36.1} /NCF	0.5 M KHCO3	-	-1.1 V vs. SCE	^m -0.025	CH ₃ OH	15.90%	483
CoPc-NH ₂ /CNT	0.1 M KHCO3	12 h	-1.0 V vs. RHE	-10.2(pcd)	CH ₃ OH	32%	484
BP NPs	0.1 M KHCO3	18 h	-0.5 V vs. RHE	^m -0.16	CH ₃ OH	92%	485
Cu _{0.8ML} /THH Pd	0.1 M NaHCO ₃	-	-0.46 V vs. RHE	^m -0.08	CH ₃ OH	19.50%	486
NCs							
CuSAs/TCNFs	0.1 M KHCO3	50 h	-0.9 V vs. RHE	^m -41(pcd)	CH ₃ OH	44%	487
Cu/TiO ₂ /NG	0.2 M KI	20 h	-0.75V vs. RHE	-0.625	C ₂ H ₅ OH	43.6%	488
c-NC	0.1 M KHCO3	24 h	-0.56 V vs. RHE	^m -1.0	C ₂ H ₅ OH	77%	489
BND3	0.1 M NaHCO ₃	48 h	-1.0 V vs. RHE	^m -0.7	C ₂ H ₅ OH	93.20%	490
Ag-G-NCF	0.1 M KHCO3	10 h	-0.6 V vs. RHE	^m -0.1	C ₂ H ₅ OH	85.2%	491
phase-blended	0.2 M KCl	-	-1.2 V vs. RHE	^m -3.0	C ₂ H ₅ OH	34.15%	492
Ag-Cu ₂ O							
OD-Ag ₁₅ Cu ₈₅	0.5 M KHCO ₃	100 h	-1.0 V vs. RHE	-8.67(pcd)	C ₂ H ₅ OH	33.7%	493
Foam							
Cu electrode	0.1 M KCl	-	-1.44 V vs. NHE	-5	C ₂ H ₅ OH	21.9%	494

Amorphous Cu	0.1 M KHCO3	12 h	-1.4 V vs. Ag/AgCl	^m -12	C ₂ H ₅ OH	22%	437
NPs							
CuO-FC	1 M KOH(flow	-	-1.0 V vs. RHE	-127.2	C ₂ H ₅ OH	35.7%	495
	cell)						
Cu_4Zn	0.1 M KHCO3	5 h	-1.05 V vs. RHE	-8.2(pcd)	C ₂ H ₅ OH	29.1%	496
Ag/Cu	1 M KOH(flow	-	-0.67 V vs. RHE	-250	C ₂ H ₅ OH	41%	497
Ce(OH) _x -doped- Cu	cell) 1 M KOH(flow cell)	6 h	-0.7 V vs. RHE	-128(pcd)	C ₂ H ₅ OH	43%	498
Cu/NPC-800	0.2 M KHCO3	10 h	-1.05 V vs. RHE	^m -6(pcd)	C ₂ H ₅ OH	64.6%	499
Cu GNC-VL	0.5 M KHCO ₃	12 h	-0.87 V vs. RHE	-10.4	C ₂ H ₅ OH	70.52%	500
GO-VB6-Cu	0.1 M KHCO ₃	24 h	-0.25 V vs. RHE	-4.571	C ₂ H ₅ OH	56.3%	501
N-C/Cu	1 M KOH	15 h	-3.67 V	-(156±3)(pcd)	C ₂ H ₅ OH	52±1%	502
N-NC/Cu	0.5 M KHCO ₃	120 h	-0. 5 V vs. RHE	84.9 A g _{Cu} ⁻¹	C ₂ H ₅ OH	28.9%	503
Ni ₂ Al film	0.1 M K ₂ SO ₄	4-5 d	-1.38 V vs. Ag/AgCl	-2.1	n-propanol	1.9%	504
Cu electrode	0.1 M KCl	-	-1.44 V vs. NHE	-5	n-propanol	3.6%	494
Cu electrode	0.1 M KClO ₄	-	-1.40 V vs. NHE	-5	n-propanol	4.2%	494
Cu nanocrystal	0.1 M KHCO3	6h	-0.95 V vs. RHE	-1.74pcd	n-propanol	8.8%	505
Plasma-oxidized	0.3 M KI +0.1 M	-	-1.0 V vs. RHE	^m -59	n-propanol	7%	506
Cu	KHCO ₃						
Catalyst	Electrolyte	Durability	Potential	Current	FE/CH ₄	FE/C ₂ H ₄	FE/C ₂ H ₆
-------------------------------	--	------------	--------------------	-------------------------------------	--------------------	----------------------------------	----------------------------------
		test		density/ mA			
				cm ⁻²			
Cold-rolled Cu ⁵⁰⁷	0.5 M KHCO3	-	-2.29 V vs. SCE	-38	33%	-	-
(99.9%)							
In situ deposited	0.5 M KHCO ₄ +	-	-	-8.3	73%	25%	-
Cu ⁵⁰⁸	5×10 ⁻⁴ M CuSO ₄						
Cu electrode ⁴⁹⁴	0.1 M KHCO3	-	-1.41 V vs. NHE	-5	29.4%	30.1%	-
Cu electrode494	0.1 M KCl	-	-1.44 V vs. NHE	-5	11.5%	47.8%	-
Cu(100) ⁵⁰⁹	0.1 M KHCO3	-	-1.39V vs. SHE	-5	CE:	40.7%	-
					19.8%		
Cu(100) ⁵¹⁰	0.1 M KHCO3	-	-1.4 V vs. SHE	-5	CE:	40.4%	-
					30.4%		
Electropolished	0.1 M KClO ₄	-	-1.1 V vs. RHE	-	5%	14%	-
Cu surface ⁵¹¹							
Cu ₂ O-derived Cu	0.1 M KHCO3	-	-0.98 V vs. RHE	m-10pcd		32.4%	
electrode ⁵¹²							
Oxide-derived	0.1 M KHCO3	5 h	-1.0 V vs. RHE	-10.9		34%	
Cu ⁵¹³							
Cu foil ⁵¹⁴	0.3 KI + 0.1 M	-	-1.0 V vs. RHE	^m -12	^m 58%	^m 22%	-
	KHCO ₃						
Polycrystalline	0.1 M KHCO ₃	-	m-1.41 V vs. NHE	^m -14.5	^m 70%	^m 15%	-
Cu ⁵¹⁵							
CuCl-confined	4 M KCl	-	-1.8 V vs. Ag/AgCl	-(16.9~13.6)	-	69.5%	-
Cu ⁵¹⁶							
CuCl derived	0.1 M KHCO3	-	-1.06 V vs. RHE	-14.8 (pcd		37%	-
Cu ⁵¹⁷				for C ₂ H ₄)			
CuBr-confined	3 M KBr	-	-2.4 V vs. Ag/AgCl	-(46.1~39.2)	-	79.5%	-

Table 10. CO₂RR performance on Cu related materials with hydrocarbons as the main products

Cu mesh							
electrode518							
Glycine-	0.1 M KHCO ₃	-	-1.9 V vs. Ag/AgCl	-2.1(pcd)	32.1%	24.0%	-
modified Cu							
foil ⁵¹⁹							
Hydrophobic Cu	0.1 M CsHCO ₃	5 h	-1.1~-1.5 V vs. RHE	-30	-	56%	-
dendrites520							
Truncated-	0.5 M KHCO3	2 h	-1.1 V vs. RHE	-23.1(pcd)	-	59%	-
octahedral Cu ₂ O							
NPs ⁵²¹							
MOF-derived Cu	1 M KOH	-	-1.07 V vs. RHE	-269		45%	
clusters ⁵²²							
B-doped Cu ⁵²³	0.1 M KCl	40 h	-1.0 V vs. RHE	-70		53±1%	
OFn-Cu ⁵²⁴	1 M KHCO ₃		-1.05 V vs. RHE	-36.24	60.6%	-	-
Cu ₂ O@Cu-	0.1 M KHCO3	1 h	-1.71 V vs. RHE	-8.4(pcd)	63.2%	-	-
MOF ⁵²⁵							
Cu ₂ O/Cu ⁵²⁶	0.1 M KHCO3	24 h	-0.9 V vs. RHE	-26.2	-	^m 20%	^m 30%
Cu-Ag ⁵²⁷	0.1 M KHCO3	12 h	-1.05 V vs. RHE	-18.07 (pcd	-	52%	-
				for C ₂ H ₄)			
Cu oxide/ZnO	0.1 M KHCO3	-	-2.5 V vs. Ag/AgCl	-7.5	-	91.1%	-
GDE ⁵²⁸							
Hydroxide-	10 M KOH	150 h	-0.55 V vs. RHE	-275		70%	
mediated Cu529							
Cu ₂ O ⁵³⁰	0.5 M KHCO ₃	2 h	-1.9 V vs. Ag/AgCl	-10		22%	
Coral-like Cu	0.1 M KHCO3	15 h	-1.1 V vs. RHE	-25.2	-	^m 45%	-
NPs ⁵³¹							
O ₂ plasma	0.1 M KHCO ₃	-	-0.9 V vs. RHE	^m -14		60%	
oxidized Cu ⁵³²							
[110] oriented	0.1 M KHCO ₃	5 h	-1.1 V vs. RHE	^m -12.5	-	^m 32.5%	-

Cu ₂ O-derived							
nanoparticles533							
Multihollow	2 M KOH (flow	3 h	-0.61 V vs. RHE	^m -360	-	38±1.4%	-
Cu ₂ O ⁵³⁴	cell)						
Multi-shelled	0.1 M K ₂ SO ₄	10 h	-1.05 V vs. RHE	-27.7	-	51.3%	-
CuO							
microboxes535							
Cu particles	0.1 M NaHCO ₃	-	-1.35 V vs. RHE	^m -9.5	76%	-	-
supported on							
glassy carbon n-							
Cu/C ⁵³⁶							
Cu catalysts ⁵³⁷	1 M KHCO ₃ (flow	22 h	^m -1.0 V <i>vs</i> . RHE	-108 ±	48 ± 2	-	-
	cell)			5(pcd)			
44 nm Cu NCs ⁵³⁸	0.1 M KHCO ₃	-	-1.1 V vs. RHE	^m -5.6		41%	
Cu nanocubes	10 M KOH (flow	3 h	-0.8 V vs. RHE	144(pcd)	-	60%	-
(70 nm) ⁵³⁹	cell)						
Cu cubes ⁵⁴⁰	1 M KOH (flow	-	-0.75 V vs. RHE	-300	-	57%	-
	cell)						
Densily packed	0.1 M KHCO3	10 h	-0.73 V vs. RHE	^m -20	-	m26%	-
Cu NPs ⁵⁴¹							
Prism shaped	0.1 M KHCO ₃	12h	-1.1 V vs. RHE	-28.6		27.8%	
Cu ⁵⁴²							
Cu NPs/N-doped	0.1 M KHCO ₃	24 h	-1.0 V vs. RHE	^m -50		63.7±1.4%	
carbon							
frameworks543							
Cu ₂ O/NCS ⁵⁴⁴	0.1 M KHCO ₃	4 h	-1.3 V vs. RHE	^m -10	-	24.7%	-
Cu ₂ O/NRGO ⁵⁴⁵	0.1 M KHCO ₃	10000 s	-1.4 V vs. RHE	-12	-	19.7%	-
Cu ₂ O/ILGS-	0.1 M KHCO ₃	6000 s	-1.15 V vs. RHE	^m -12	-	31.1%	-
100 ⁵⁴⁶							

Cu ₂ O NP/C ⁵⁴⁷	0.1 M KHCO ₃	6 h	-1.1 V vs. RHE	^m -17.5	1.9%	57.3%	-
Cu-N-C-900548	0.1 M KHCO ₃	10 h	-1.6 V vs. RHE	-14.8(pcd)	38.6%	-	-
P-ED-Cu ⁵⁴⁹	0.5 M NaHCO ₃	2.5 h	-2.8 V vs. SCE	-38(pcd)	85%		
Cu(2)GO/GC ⁵⁵⁰	0.1 M NaHCO ₃	2 h	-1.3 V vs. RHE	-4.6	43.6%		
Pd@Cu NCs ⁵⁵¹	0.25 K ₂ CO ₃	4000 s	-1.4 V vs. Ag/AgCl	-14.2	^m 45%	^m 6%	
Pd@Cu NCs ⁵⁵¹	0.25 K ₂ CO ₃	4000 s	-1.4 V vs. Ag/AgCl	-33.6	^m 58%	^m 16%	
Glycine-	0.1 M KHCO3	14 h	-1.9 V vs. Ag/AgCl	-11		6.7%	13%
modified Cu							
NWs ⁵¹⁹							
CTF-Cu-4.8%	0.3 M KCl	10 h	-1.51 V vs. SHE	-44.5 mA	^m 60%	^m 20%	-
				mg-1			
Polycrystalline	0.1 M KHCO3+10	43 h	-1.15 V vs. RHE	-6.4	-	40%	-
Cu ⁵⁵²	mM N-aryl						
	pyridinium salt)						
Cu NWs ⁵⁵³	0.1 M KHCO3	6 h	-1.3 V vs. RHE	^m -12.5	^m 6.2%	12%	
Cu NNs	0.1 M KHCO3	6 h	-1.2 V vs. RHE	^m -17	14.3%	^m 6%	
Cu-DAT wire ⁵⁵⁴	1 M KOH(flow	-	-0.5 V vs. RHE	^m -124	-	40%	
	cell)						
Cu-Ag alloy	1 M KOH(flow	-	-0.7 V vs. RHE	-300		60%	
DAT wire555	cell)						
CuSn-DAT556	1 M KOH(flow	-	-0.8 V vs. RHE	-225	-	40%	
	cell)						
Ag/Cu ⁵⁵⁷	0.1 M KHCO3	30 h	-1.1 V vs. RHE	-5.9	-	42%	-
Anodized Cu ⁵⁵⁸	0.1 M KHCO3	40 h	-1.08 V vs. RHE	^m -7.3 (pcd)		38.1%	
Dendritic Cu559	0.1 M KBr	2.5 h	-1.9 V vs. Ag/AgCl	-170	-	57%	
Honeycomb	0.1 M KHCO3	-	-1.9 V vs. Ag/AgCl	-	-	CE.m12%	CE.m2.5%
Cu(VII) ⁵⁶⁰							
Oxide-derived	0.5 M KHCO3	-	-0.9 V vs. RHE	^m -23	-	^m 15%	^m 40%
foam Cu ⁵⁶¹							

mesopore Cu ⁵⁶²	0.1 M KHCO3	-	-1.7V vs.NHE	-14.3	-	-	46%
CuO-derived Cu	0.1 M KHCO3	5400 s	-0.816 V vs. RHE	^m -12.5	-	23%	7%
NRAs ⁵⁶³							
Nanopore	0.1 M KHCO3	8 h	-1.3 V vs. RHE	-45	-	35%	-
modified Cu 564							
Plasma-oxidized	0.3 KI + 0.1 M	-	-1.0 V vs. RHE	^m -59	-	47.6%	-
Cu ⁵⁰⁶	KHCO3						
Cu ₂ O ⁵⁶⁵	0.1 M KHCO3	-	-0.99 V vs. RHE	-35	-	34.26%	-
Cu ₂ (OH) ₃ Cl ⁵⁶⁶	0.1 M KHCO3	-	-1.2 V vs. RHE	-22(pcd)	-	38%	-
				(C ₂ H ₄)			
Cu based catalyst	0.5 M Cs ₂ SO ₄	24 h	-0.64 V vs. RHE	-300	-	43%	-
with Cu ₄ O ₃							
particles567							
CuCl-based	0.1 M KHCO3	6 h	-1.06 V vs. RHE	-14.8(pcd)	-	37%	-
electrode517				(C ₂ H ₄)			
Cu-on Cu ₃ N ²⁴⁶	0.1 M KHCO3	30 h	-0.95 V vs. RHE	-14(pcd) for	-	39±2%	-
				C ₂ H ₄ ,			
				C ₂ H ₅ OH,			
				and			
				C3H7OH			
Cu ₃ N NCs ⁵⁶⁸	0.1 M KHCO3	20 h	-1.6 V vs. RHE	-34 A/g	-	60%	-
Cu ₃ N-derived	0.1 M CsHCO ₃	-	-1.0 V vs. RHE	~18.5	-	33%	~20%
Cu ⁵⁶⁹							
Cu ₃ Pd ⁹⁴	0.1 M KHCO3	-	-1.2 V vs. RHE	-3.8(pcd)	40.6%	-	-
PdCl/Cu ₂ O-	0.1 M KHCO3	12 h	-1.0 V vs. RHE	^m -17	-	3.4%	30.1%
Derived Cu ⁵⁷⁰							
3MLCu/ZnO ⁵⁷¹	0.1 M KHCO ₃	-	-1.4 V vs. Ag/AgCl	^m -12	-	^m 10.2%	-
$Cu_{4.16}CeO_2^{572}$	0.1 M KHCO ₃	6 h	-1.1 V vs. RHE	-3.2	~10%	47.6%	
Cu-substituted	0.1 M KHCO3	8000s	-1.8 V vs. RHE	-70	58%	-	-

CeO ₂ (4%) ²²⁷							
Cu/CeO _{2-x}	0.1 M KHCO ₃	-	-1.2 V vs. RHE	-	54%	-	-
hterodimers573							
$La_2CuO_4^{574}$	1 M KOH(flow	-	-1.4 V vs. RHE	117(pcd)	56.3%	-	-
	cell)						
NGQDs ⁵⁷⁵	1 M KOH	-	-0.75 V vs. RHE	^m -13	-	31%	-
				(C ₂ H ₅ OH),			
				^m -28(C ₂ H ₄)			
N-doped C/CP576	[Bmim]BF ₄	5 h	-1.4 V vs. SHE	-1.42	93.5%	-	-
MoTe ₂ layer ⁵⁷⁷	0.1 M KHCO ₃	45 h	-1.0 V vs. RHE	-25.6	83±3	-	-
					0/		
					70		
CuS@NF ⁵⁷⁸	0.1 M KHCO3	60 h	-1.0 V vs. RHE	^m -7.3	∞ 73±5		
CuS@NF ⁵⁷⁸	0.1 M KHCO3	60 h	-1.0 V vs. RHE	^m -7.3	%° 73±5 %		

m: evaluated from the figures, pcd: partial current density, CE: current efficiency.

Catalyst	Electrolyte	Durability	Potential	Current	Products	FE	Reference
		test		density/ mA			
				cm ⁻²			
Cu(110)	0.1 M KHCO3	-	-1.58 V vs. SHE	-5	acetate	CE.20.8%	579
NDD/Si RA	0.5 M NaHCO ₃	30 h	-1.0 V vs. RHE	^m -1.0	acetate	91.8%	580
Cu(I) complex	25 mol%	5 h	-1.3 V vs. RHE	-13.9	acetate	80.3%	581
/BN-C	[Emim]BF ₄)-						
	0.01M LiI-H ₂ O						
Cu(10)-CNT	0.5 M KHCO ₃	24 h	-1.4 V vs. Ag/AgCl	-100	acetate	56.3%	582
Fh-FeOOH/N-C	0.05 M KHCO3	-	-0.5 V vs. Ag/AgCl	-0.36	acetate	60.9%	583
In sheet	0.1 M	-	-0.71 V vs. RHE	^m -0.5	acetate	96.5%	584
	Na ₂ SO ₄ +2mM						
	SiW ₉ V ₃						
Cu-Cu ₂ O/Cu	0.1 M KCl	24 h	-0.4 V vs. RHE	-11.5	acetate	48%	585
N-NC/Cu	0.5 M KHCO ₃	120 h	-0.5 V vs. RHE	102.2 A g _{Cu} ⁻¹	acetate	34.7%	503
MoO ₂ /Pb(-20	0.1 M	5 h	-2.45 V vs. Fc/Fc+	-20	oxalate	45%	586
°-)	TBAPF ₆ /MeCN						
Cr-Ga/GC	0.1 M KCl	10 days	-1.48 vs. Ag/AgCl	-(8~10)	oxalate	59%	587

Table 11. CO_2RR performance on materials with acetate and oxalate formation

m: evaluated from the figures, pcd: partial current density, CE: current efficiency

Reference:

- 1. Y. Hori, In *Modern aspects of electrochemistry*, Springer, 2008, 89-189.
- D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li, R. M. Penner, R. E. Schaak and P. S. Weiss, *ACS Nano*, 2018, **12**, 9635-9638.
- T. Tian, H. Gao, X. C. Zhou, L. R. Zheng, J. F. Wu, K. Li and Y. Ding, ACS Energy Lett., 2018, 3, 2150-2158.
- 4. J. Gu, F. Heroguel, J. Luterbacher and X. Hu, Angew. Chem. Int. Ed., 2018, 57, 2943-2947.
- 5. K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu and J. Yu, ACS Catal., 2019, 10, 358-364.
- Y. Hori, A. Murata, K. Kikuchi and S. Suzuki, J. Chem. Soc., Chem. Commun., 1987, 728-729.
- 7. Y. Chen, C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 19969-19972.
- W. Zhu, R. Michalsky, O. n. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.
- E. B. Nursanto, H. S. Jeon, C. Kim, M. S. Jee, J. H. Koh, Y. J. Hwang and B. K. Min, *Catal. Today*, 2016, 260, 107-111.
- M. Liu, M. Liu, X. Wang, S. M. Kozlov, Z. Cao, P. De Luna, H. Li, X. Qiu, K. Liu, J. Hu,
 C. Jia, P. Wang, H. Zhou, J. He, M. Zhong, X. Lan, Y. Zhou, Z. Wang, J. Li, A.
 Seifitokaldani, D. Cao Thang, H. Liang, C. Zou, D. Zhang, Y. Yang, T.-S. Chan, Y. Han,
 L. Cavallo, T.-K. Sham, B.-J. Hwang and E. H. Sargent, *Joule*, 2019, 3, 1703-1718.
- 11. L. H. a. W. H. Yicheng Zhang, J. Mater. Chem. A, 2018, 6, 23610-23620.
- W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135.
- M. Cho, J. M. Kim, B. Kim, S. Yim, Y. J. Kim, Y. S. Jung and J. Oh, *J. Mater. Chem. A*, 2019, 7, 6045-6052.
- E. Andrews, S. Katla, C. Kumar, M. Patterson, P. Sprunger and J. Flake, *J. Electrochem.* Soc., 2015, 162, F1373-F1378.
- A. S. Hall, Y. Yoon, A. Wuttig and Y. Surendranath, J. Am. Chem. Soc., 2015, 137, 14834-14837.
- 16. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan,

C. Cao, F. P. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley and E. H. Sargent, *Nature*, 2016, **537**, 382-386.

- T. Saberi Safaei, A. Mepham, X. Zheng, Y. Pang, C.-T. Dinh, M. Liu, D. Sinton, S. O. Kelley and E. H. Sargent, *Nano Lett.*, 2016, 16, 7224-7228.
- 18. C. Chen, B. Zhang, J. Zhong and Z. Cheng, J. Mater. Chem. A, 2017, 5, 21955-21964.
- M. N. Hossain, Z. G. Liu, J. L. Wen and A. C. Chen, *Appl. Catal. B Environ.*, 2018, 236, 483-489.
- X. Wen, L. Chang, Y. Gao, J. Han, Z. Bai, Y. Huan, M. Li, Z. Tang and X. Yan, *Inorg. Chem. Front.*, 2018, 5, 1207-1212.
- W. Zhang, J. He, S. Liu, W. Niu, P. Liu, Y. Zhao, F. Pang, W. Xi, M. Chen, W. Zhang, S.-S. Pang and Y. Ding, *Nanoscale*, 2018, 10, 8372-8376.
- G. Hyun, J. T. Song, C. Ahn, Y. Ham, D. Cho, J. Oh and S. Jeon, *Proc. Natl. Acad. Sci.* U.S.A., 2020, 117, 5680-5685.
- 23. Z. Qi, J. Biener and M. Biener, ACS Appl. Energy Mater., 2019, 2, 7717-7721.
- K. S. Kwok, Y. Wang, M. C. Cao, H. Shen, Z. He, G. Poirier, B. E. McCandless, K. J. Livi, D. A. Muller, C. Wang and D. H. Gracias, *Nano Lett.*, 2019, 19, 9154-9159.
- J. Kim, J. T. Song, H. Ryoo, J.-G. Kim, S.-Y. Chung and J. Oh, *J. Mater. Chem. A*, 2018, 6, 5119-5128.
- 26. Y. Wang, J. Liu, Y. Wang, Y. Wang and G. Zheng, *Nat. Commun.*, 2018, 9, 5003.
- 27. X. Feng, K. Jiang, S. Fan and M. W. Kanan, J. Am. Chem. Soc., 2015, 137, 4606-4609.
- C. Rogers, W. S. Perkins, G. Veber, T. E. Williams, R. R. Cloke and F. R. Fischer, J. Am. Chem. Soc., 2017, 139, 4052-4061.
- D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang and X. Bao, *J. Am. Chem. Soc.*, 2017, 139, 5652-5655.
- L. Zhang, F. Mao, L. R. Zheng, H. F. Wang, X. H. Yang and H. G. Yang, ACS Catal., 2018, 8, 11035-11041.
- Z. Ma, C. Lian, D. Niu, L. Shi, S. Hu, X. Zhang and H. Liu, *ChemSusChem*, 2019, 12, 1724-1731.
- 32. Y. Wu, X. Yuan, Z. Tao and H. Wang, Chem. Commun., 2019, 55, 8864-8867.
- 33. K. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A.

Goddard, 3rd and Z. Wang, J. Am. Chem. Soc., 2017, 139, 15608-15611.

- D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Norskov and P. Yang, *J. Am. Chem. Soc.*, 2017, **139**, 8329-8336.
- J. Liu, Y. Wang, H. Jiang, H. Jiang, X. Zhou, Y. Li and C. Li, *Chem.-Asian J.*, 2020, 15, 425-431.
- X. Ma, Y. Shen, S. Yao, C. An, W. Zhang, J. Zhu, R. Si, C. Guo and C. An, *J. Mater. Chem. A*, 2020, 8, 3344-3350.
- S. Zhu, X. Qin, Q. Wang, T. Li, R. Tao, M. Gu and M. Shao, J. Mater. Chem. A, 2019, 7, 16954-16961.
- W. J. Zhu, L. Zhang, P. P. Yang, C. L. Hu, H. Dong, Z. J. Zhao, R. T. Mu and J. L. Gong, ACS Energy Lett., 2018, 3, 2144-2149.
- S. Zhao, Z. Tang, S. Guo, M. Han, C. Zhu, Y. Zhou, L. Bai, J. Gao, H. Huang, Y. Li, Y. Liu and Z. Kang, *ACS Catal.*, 2018, 8, 188-197.
- 40. M. Cho, J. T. Song, S. Back, Y. Jung and J. Oh, ACS Catal., 2018, 8, 1178-1185.
- Z. Cao, S. B. Zacate, X. Sun, J. Liu, E. M. Hale, W. P. Carson, S. B. Tyndall, J. Xu, X. Liu, X. Liu, C. Song, J. H. Luo, M. J. Cheng, X. Wen and W. Liu, *Angew. Chem. Int. Ed.*, 2018, 57, 12675-12679.
- 42. Y. Zhao, C. Y. Wang, Y. Q. Liu, D. R. MacFarlane and G. G. Wallace, *Adv. Energy Mater.*, 2018, **8**, 1801400.
- M. W. Chung, I. Y. Cha, M. G. Ha, Y. Na, J. Hwang, H. C. Ham, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park and J. H. Jang, *Appl. Catal. B Environ.*, 2018, 237, 673-680.
- 44. L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou, K. Wen and H. Yang, *J. CO2 Util.*, 2019, 34, 108-114.
- M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager and A. T. Bell, *J. Am. Chem. Soc.*, 2016, 138, 13006-13012.
- 46. B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. Kenis and R. I. Masel, *Science*, 2011, **334**, 643-644.
- 47. F. Zhou, S. Liu, B. Yang, P. Wang, A. S. Alshammari and Y. Deng, *Electrochem. Commun.*, 2014, **46**, 103-106.

- 48. S. B. Liu, C. Sun, J. Xiao and J. L. Luo, ACS Catal., 2020, 10, 3158-3163.
- 49. W. Xi, R. Ma, H. Wang, Z. Gao, W. Zhang and Y. Zhao, ACS Sustain. Chem. Eng., 2018, 6, 7687-7694.
- S. Liu, X.-Z. Wang, H. Tao, T. Li, Q. Liu, Z. Xu, X.-Z. Fu and J.-L. Luo, *Nano Energy*, 2018, 45, 456-462.
- C. Luan, Y. Shao, Q. Lu, S. Gao, K. Huang, H. Wu and K. Yao, ACS Appl. Mater. Interfaces, 2018, 10, 17950-17956.
- 52. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen and F. Jiao, *Nat. Commun.*, 2014, **5**, 3242.
- 53. L. Zhang, Z. Wang, N. Mehio, X. Jin and S. Dai, *ChemSusChem*, 2016, 9, 428-432.
- H. Wang, Z. Han, L. Zhang, C. Cui, X. Zhu, X. Liu, J. Han and Q. Ge, *J. CO2 Util.*, 2016, 15, 41-49.
- T. Fan, Q. Wu, Z. Yang, Y. Song, J. Zhang, P. Huang, Z. Chen, Y. Dong, W. Fang and X.
 Yi, *ChemSusChem*, 2020, 13, 2677-2683.
- 56. C.-Y. Lee, Y. Zhao, C. Wang, D. R. G. Mitchell and G. G. Wallace, *Sustain. Energy Fuels*, 2017, **1**, 1023-1027.
- 57. Y. Yoon, A. S. Hall and Y. Surendranath, Angew. Chem. Int. Ed., 2016, 55, 15282-15286.
- M. Ma, B. J. Trzesniewski, J. Xie and W. A. Smith, *Angew. Chem. Int. Ed.*, 2016, 55, 9748-9752.
- 59. M. Ma, K. Liu, J. Shen, R. Kas and W. A. Smith, ACS Energy Lett., 2018, 3, 1301-1306.
- 60. X. Peng, S. G. Karakalos and W. E. Mustain, ACS Appl. Mater. Interfaces, 2018, 10, 1734-1742.
- C.-T. Dinh, F. P. García de Arquer, D. Sinton and E. H. Sargent, *ACS Energy Lett.*, 2018, 3, 2835-2840.
- Y. Zhang, L. Ji, W. Qiu, X. Shi, A. M. Asiri and X. Sun, *Chem. Commun.*, 2018, 54, 2666-2669.
- J. Gao, C. Zhu, M. Zhu, Y. Fu, H. Huang, Y. Liu and Z. Kang, ACS Sustain. Chem. Eng., 2019, 7, 3536-3543.
- 64. C.-Y. Lee and G. G. Wallace, J. Mater. Chem. A, 2018, 6, 23301-23307.
- 65. Q. Jianping, T. Juntao, S. Jie, W. Cuiwei, Q. Mengqian, H. Zhiqiao, C. Jianmeng and S.

Song, Electrochim. Acta, 2016, 203, 99-108.

- Y.-C. Hsieh, S. D. Senanayake, Y. Zhang, W. Xu and D. E. Polyansky, *ACS Catal.*, 2015, 5, 5349-5356.
- H. Q. Fu, L. Zhang, L. R. Zheng, P. F. Liu, H. Zhao and H. G. Yang, *J. Mater. Chem. A*, 2019, 7, 12420-12425.
- C. Kim, T. Eom, M. S. Jee, H. Jung, H. Kim, B. K. Min and Y. J. Hwang, ACS Catal., 2017, 7, 779-785.
- C. Kim, H. S. Jeon, T. Eom, M. S. Jee, H. Kim, C. M. Friend, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2015, 137, 13844-13850.
- L. Wei, H. Li, J. Chen, Z. Yuan, C. Huang, X. Liao, G. Henkelman and Y. Chen, ACS Catal., 2020, 10, 1444-1453.
- L. Shi, Y. Zhang, X. Han, D. Niu, J. Sun, J. Y. Yang, S. Hu and X. Zhang, *Chinese J. Chem.*, 2019, **37**, 337-341.
- Y. Pan, W. J. Paschoalino, S. S. Bayram, A. S. Blum and J. Mauzeroll, *Nanoscale*, 2019, 11, 18595-18603.
- 73. S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim and P. J. A. Kenis, *J. Mater. Chem. A*, 2016,
 4, 8573-8578.
- S. X. Guo, F. Li, L. Chen, D. R. MacFarlane and J. Zhang, ACS Appl Mater Interfaces, 2018, 10, 12690-12697.
- S. C. Abeyweera, J. Yu, J. P. Perdew, Q. Yan and Y. Sun, *Nano Lett.*, 2020, 20, 2806-2811.
- S. M. Lee, H. Lee, J. Kim, S. H. Ahn and S. T. Chang, *Appl. Catal. B Environ.*, 2019, 259, 118045.
- H. Mistry, Y.-W. Choi, A. Bagger, F. Scholten, C. S. Bonifacio, I. Sinev, N. J. Divins, I. Zegkinoglou, H. S. Jeon, K. Kisslinger, E. A. Stach, J. C. Yang, J. Rossmeisl and B. Roldan Cuenya, *Angew. Chem. Int. Ed.*, 2017, 56, 11394-11398.
- M. S. Jee, H. S. Jeon, C. Kim, H. Lee, J. H. Koh, J. Cho, B. K. Min and Y. J. Hwang, *Appl. Catal. B Environ.*, 2016, 180, 372-378.
- 79. L. QináZhou, Chem. Commun., 2015, 51, 17704-17707.
- 80. R. Daiyan, X. Lu, Y. H. Ng and R. Amal, *Chemistryselect*, 2017, 2, 879-884.

- A. Dutta, C. E. Morstein, M. Rahaman, A. C. Lopez and P. Broekmann, *ACS Catal.*, 2018, 8, 8357-8368.
- K. Jiang, P. Kharel, Y. Peng, M. K. Gangishetty, H.-Y. G. Lin, E. Stavitski, K. Attenkofer and H. Wang, ACS Sustain. Chem. Eng., 2017, 5, 8529-8534.
- S. Ma, Y. Lan, G. M. J. Perez, S. Moniri and P. J. A. Kenis, *ChemSusChem*, 2014, 7, 866-874.
- Z. Cai, Y. Wu, Z. Wu, L. Yin, Z. Weng, Y. Zhong, W. Xu, X. Sun and H. Wang, ACS Energy Lett., 2018, 3, 2816-2822.
- J. Zhang, M. Qiao, Y. Li, Q. Shao and X. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 39722-39727.
- H. Li, P. Wen, D. S. Itanze, Z. D. Hood, X. Ma, M. Kim, S. Adhikari, C. Lu, C. Dun, M. Chi, Y. Qiu and S. M. Geyer, *Nat. Commun.*, 2019, 10, 5724.
- 87. L. Hu, Y. Zhang and W. Han, New J. Chem., 2019, 43, 3269-3272.
- H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang and J. Zeng, *Angew. Chem. Int. Ed.*, 2017, 56, 3594-3598.
- 89. W. L. Zhu, S. Kattel, F. Jiao and J. G. G. Chen, Adv. Energy Mater., 2019, 9, 1802840.
- 90. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang and X. Bao, J. Am. Chem. Soc., 2015, 137, 4288-4291.
- 91. D. F. Gao, H. Zhou, F. Cai, D. N. Wang, Y. F. Hu, B. Jiang, W. B. Cai, X. Q. Chen, R. Si,
 F. Yang, S. Miao, J. G. Wang, G. X. Wang, X. H. Bao, *Nano Res.*, 2017, 10, 2181-2191.
- 92. W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu and J. G. Chen, *Energy Environ. Sci.*, 2017, **10**, 1180-1185.
- R. Chen, M. Cao, W. Yang, H. Wang, S. Zhang, H. Li and R. Cao, *Chem. Commun.*, 2019, 55, 9805-9808.
- W. Zhu, L. Zhang, P. Yang, X. Chang, H. Dong, A. Li, C. Hu, Z. Huang, Z. J. Zhao and J. Gong, *Small*, 2018, 14, 1703314.
- Z. Yin, D. Gao, S. Yao, B. Zhao, F. Cai, L. Lin, P. Tang, P. Zhai, G. Wang, D. Ma and X. Bao, *Nano Energy*, 2016, 27, 35-43.
- 96. Y. Mun, S. Lee, A. Cho, S. Kim, J. W. Han and J. Lee, *Appl. Catal. B Environ.*, 2019, 246, 82-88.

- S. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B. P. Lee, L. Zhang, Y. Yao, T. Li and M. Shao, *Adv. Energy Mater.*, 2018, 8, 1802238.
- H. C. Tao, X. F. Sun, S. Back, Z. S. Han, Q. G. Zhu, A. W. Robertson, T. Ma, Q. Fan, B. X. Han, Y. Jung and Z. Y. Sun, *Chem. Sci.*, 2018, 9, 483-487.
- W. Zhu, L. Zhang, P. Yang, C. Hu, Z. Luo, X. Chang, Z. J. Zhao and J. Gong, *Angew. Chem. Int. Ed.*, 2018, 57, 11544-11548.
- F. Quan, D. Zhong, H. Song, F. Jia and L. Zhang, J. Mater. Chem. A, 2015, 3, 16409-16413.
- J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore and F. Jiao, ACS Catal., 2015, 5, 4586-4591.
- 102. W. Luo, J. Zhang, M. Li and A. Zuttel, ACS Catal., 2019, 9, 3783-3791.
- 103. D. H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim and S. I. Woo, Angew. Chem. Int. Ed., 2016, 55, 9297-9300.
- 104. N. Dang Le Tri, M. S. Jee, D. H. Won, H. Jung, H.-S. Oh, B. K. Min and Y. J. Hwang, ACS Sustain. Chem. Eng., 2017, 5, 11377-11386.
- 105. K. Jiang, H. Wang, W.-B. Cai and H. Wang, ACS Nano, 2017, 11, 6451-6458.
- 106. F.-x. Shen, J. Shi, T.-y. Chen, F. Shi, Q.-y. Li, J.-z. Zhen, Y.-f. Li, Y.-n. Dai, B. Yang and T. Qu, J. Power Sources, 2018, 378, 555-561.
- 107. Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang and J. Zeng, Angew. Chem. Int. Ed., 2018, 57, 6054-6059.
- W. Ma, H. Wang, W. Yu, X. Wang, Z. Xu, X. Zong and C. Li, *Angew. Chem. Int. Ed.*, 2018, 57, 3473-3477.
- 109. C. L. Li, G. R. Shen, R. Zhang, D. Y. Wu, C. Q. Zou, T. Ling, H. Liu, C. K. Dong and X.
 W. Du, J. Mater. Chem. A, 2019, 7, 1418-1423.
- T. Zhang, X. Li, Y. Qiu, P. Su, W. Xu, H. Zhong and H. Zhang, J. Catal., 2018, 357, 154 162.
- 111. K. Liu, J. Wang, M. Shi, J. Yan and Q. Jiang, Adv. Energy Mater., 2019, 9, 1900276.
- 112. M. Zhao, Y. Gu, P. Chen, Z. Xin, H. Zhu, B. Wang, K. Zhu, S. Yan and Z. Zou, J. Mater. Chem. A, 2019, 7, 9316-9323.
- 113. M. Ma, K. Djanashvili and W. A. Smith, Phys. Chem. Chem. Phys., 2015, 17, 20861-

20867.

- 114. D. Raciti, K. J. Livi and C. Wang, Nano Lett., 2015, 15, 6829-6835.
- L. Cao, D. Raciti, C. Li, K. J. T. Livi, P. F. Rottmann, K. J. Hemker, T. Mueller and C. Wang, *ACS Catal.*, 2017, 7, 8578-8587.
- J. Chung, J. Koh, E.-H. Kim and S. I. Woo, *Phys. Chem. Chem. Phys.*, 2016, 18, 6252-6258.
- R. Kas, K. K. Hummadi, R. Kortlever, P. de Wit, A. Milbrat, M. W. Luiten-Olieman, N. E. Benes, M. T. Koper and G. Mul, *Nat. Commun.*, 2016, 7, 10748.
- X. Zheng, J. Han, Y. Fu, Y. Deng, Y. Liu, Y. Yang, T. Wang and L. Zhang, *Nano Energy*, 2018, 48, 93-100.
- N.-P. Thuy-Duong, C. Wang, C. M. Marin, Y. Zhou, E. Stavitski, E. J. Popczun, Y. Yu,
 W. Xu, B. H. Howard, M. Y. Stuckman, I. Waluyo, P. R. Ohodnicki, Jr. and D. R. Kauffman, J. Mater. Chem. A, 2019, 7, 27576-27584.
- 120. J. Pan, Y. Sun, P. Deng, F. Yang, S. Chen, Q. Zhou, H. S. Park, H. Liu and B. Yu Xia, *Appl. Catal. B Environ.*, 2019, 255, 117736.
- 121. G. O. Larrazabal, A. J. Martin, F. Krumeich, R. Hauert and J. Perez-Ramirez, *ChemSusChem*, 2017, **10**, 1255-1265.
- 122. Y. Zhao, C. Wang and G. G. Wallace, J. Mater. Chem. A, 2016, 4, 10710-10718.
- 123. Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J. J. Zhu and S. Sun, J. Am. Chem. Soc., 2017, 139, 4290-4293.
- S. Sarfraz, A. T. Garcia-Esparza, A. Jedidi, L. Cavallo and K. Takanabe, ACS Catal., 2016, 6, 2842-2851.
- A. Vasileff, C. Xu, L. Ge, Y. Zheng and S. Z. Qiao, *Chem. Commun.*, 2018, 54, 13965-13968.
- C. Wang, M. Cao, X. Jiang, M. Wang and Y. Shen, *Electrochim. Acta*, 2018, 271, 544-550.
- 127. J. Medina-Ramos, R. C. Pupillo, T. P. Keane, J. L. DiMeglio and J. Rosenthal, J. Am. Chem. Soc., 2015, 137, 5021-5027.
- 128. L. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, S. Mo,
 B. Wu, G. Fu, P. Zhang and N. Zheng, *Sci. Adv.*, 2017, 3, e1701069-e1701069.

- 129. D. Tan, J. Zhang, X. Cheng, X. Tan, J. Shi, B. Zhang, B. Han, L. Zheng and J. Zhang, *Chem. Sci.*, 2019, **10**, 4491-4496.
- 130. W. Zhang, J. Zeng, H. Liu, Z. Shi, Y. Tang and Q. Gao, J. Catal., 2019, 372, 277-286.
- H. Yang, Y. w. Hu, J. j. Chen, M. S. Balogun, P. p. Fang, S. Zhang, J. Chen and Y. Tong, *Adv. Energy Mater.*, 2019, 9, 1901396.
- S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo and K. Takanabe, *Angew. Chem. Int. Ed.*, 2015, **127**, 2174-2178.
- A. Jedidi, S. Rasul, D. Masih, L. Cavallo and K. Takanabe, J. Mater. Chem. A, 2015, 3, 19085-19092.
- 134. Y. J. Jang, J. Lee, J. H. Kim, B. J. Lee and J. S. Lee, *J. Power Sources*, 2018, 378, 412-417.
- W. Guo, X. Sun, C. Chen, D. Yang, L. Lu, Y. Yang and B. Han, *Green Chem.*, 2019, 21, 503-508.
- W. Luo, W. Xie, R. Mutschler, E. Oveisi, G. L. De Gregorio, R. Buonsanti and A. Züttel, ACS Catal., 2018, 8, 6571-6581.
- 137. G. O. Barasa, T. Yu, X. Lu, X. Zhou, H. Wang, L. Qian, Y. Yu, L. Liu and P. Lei, *Electrochim. Acta*, 2019, 295, 584-590.
- 138. S. Chu, S. Hong, J. Masa, X. Li and Z. Sun, Chem. Commun., 2019, 55, 12380-12383.
- H. Xiang, S. Rasul, B. Hou, J. Portoles, P. Curnpson and E. H. Yu, ACS Appl. Mater. Interfaces, 2020, 12, 601-608.
- M. Wang, X. Ren, G. Yuan, X. Niu, Q. Xu, W. Gao, S. Zhu and Q. Wang, J. CO2 Util., 2020, 37, 204-212.
- 141. W. Zhang, C. Xu, Y. Hu, S. Yang, L. Ma, L. Wang, P. Zhao, C. Wang, J. Ma and Z. Jin, *Nano Energy*, 2020, **73**, 104796.
- P. Shao, S. Ci, L. Yi, P. Cai, P. Huang, C. Cao and Z. Wen, *ChemElectroChem*, 2017, 4, 2593-2598.
- F. Urbain, P. Tang, N. M. Carretero, T. Andreu, J. Arbiol and J. R. Morante, ACS Appl. Mater. Interfaces, 2018, 10, 43650-43660.
- 144. X. Xiao, Y. Xu, X. Lv, J. Xie, J. Liu and C. Yu, J. Colloid Interf. Sci., 2019, 545, 1-7.
- 145. M. Peng, S. Ci, P. Shao, P. Cai and Z. Wen, J. Nanosci. Nanotechnol., 2019, 19, 3232-

3236.

- Y. Zhou, X. Guo, X. Li, J. Fu, J. Liu, F. Hong and J. Qiao, J. CO2 Util., 2020, 37, 188-194.
- 147. H. Park, J. Choi, H. Kim, E. Hwang, D.-H. Ha, S. H. Ahn and S.-K. Kim, *Appl. Catal. B Environ.*, 2017, 219, 123-131.
- C. I. Shaughnessy, D. T. Jantz and K. C. Leonard, J. Mater. Chem. A, 2017, 5, 22743-22749.
- A. Aljabour, H. Coskun, D. H. Apaydin, F. Ozel, A. W. Hassel, P. Stadler, N. S. Sariciftci and M. Kus, *Appl. Catal. B Environ.*, 2018, 229, 163-170.
- 150. C. Yan, L. Lin, D. Gao, G. Wang and X. Bao, J. Mater. Chem. A, 2018, 6, 19743-19749.
- M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade and A. Salehi-Khojin, *Nat. Commun.*, 2014, 5, 4470.
- P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L. A. Curtiss and A. Salehi-Khojin, *ACS Nano*, 2017, 11, 453-460.
- 153. M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss and A. Salehi-Khojin, *Science*, 2016, **353**, 467-470.
- 154. F. Li, S.-F. Zhao, L. Chen, A. Khan, D. R. MacFarlane and J. Zhang, *Energy Environ. Sci.*, 2016, 9, 216-223.
- 155. L. Yu, Y. Xie, J. Zhou, Y. Li, Y. Yu and Z. Ren, J. Mater. Chem. A, 2018, 6, 4706-4713.
- 156. K. Lv, C. Teng, M. Shi, Y. Yuan, Y. Zhu, J. Wang, Z. Kong, X. Lu and Y. Zhu, Adv. Funct. Mater., 2018, 28, 1802339.
- 157. K. L. Lv, W. Q. Suo, M. D. Shao, Y. Zhu, X. P. Wang, J. J. Feng and M. W. Fang, *Nano Energy*, 2019, **63**, 103834.
- 158. S. Liu, H. Tao, Q. Liu, Z. Xu, Q. Liu and J.-L. Luo, ACS Catal., 2018, 8, 1469-1475.
- 159. J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju, T. Yao, C. Wang, H. Ju, J. Zhu, S. Wei and Y. Xie, Angew. Chem. Int. Ed., 2017, 56, 9121-9125.
- 160. R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu and J. Zeng, *Adv. Mater.*, 2018, 30, 1705872.

- F.-Y. Gao, S.-J. Hu, X.-L. Zhang, Y.-R. Zheng, H.-J. Wang, Z.-Z. Niu, P.-P. Yang, R.-C.
 Bao, T. Ma, Z. Dang, Y. Guan, X.-S. Zheng, X. Zheng, J.-F. Zhu, M.-R. Gao and S.-H.
 Yu, Angew. Chem. Int. Ed., 2020, 132, 8784-8790.
- 162. B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang and F. Peng, *Nano Energy*, 2019, **60**, 43-51.
- D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang and B. Han, *Angew. Chem. Int. Ed.*, 2020, **59**, 2354-2359.
- 164. J. Shi, D. Shao, J. Zhang, D. Tan, X. Tan, B. Zhang, B. Han, F. Zhang, L. Liu and X. Cheng, *Chem. Commun.*, 2018, 54, 5450-5453.
- S. Piontek, K. Junge Puring, D. Siegmund, M. Smialkowski, I. Sinev, D. Tetzlaff, B. Roldan Cuenya and U. P. Apfel, *Chem. Sci.*, 2019, 10, 1075-1081.
- 166. X. Huang, J. Song, H. Wu, C. Xie, M. Hua, Y. Hu and B. Han, *ChemSusChem*, 2020, DOI: 10.1002/cssc.202000329.
- 167. Z. Han, Q. Hu, Z. Cheng, G. Li, X. Huang, Z. Wang, H. Yang, X. Ren, Q. Zhang, J. Liu and C. He, *Adv. Funct. Mater.*, 2020, **30**, 2000154
- T. N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen and M. Fontecave, ACS Catal., 2017, 7, 1520-1525.
- 169. A. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.-S. Oh and P. Strasser, Angew. Chem. Int. Ed., 2015, 54, 10758-10762.
- W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl and P. Strasser, *Nat. Commun.*, 2017, 8, 944.
- 171. J. Zhao, J. Deng, J. Han, S. Imhanria, K. Chen and W. Wang, Chem. Eng. J., 2020, 389.
- 172. X. M. Hu, H. H. Hval, E. T. Bjerglund, K. J. Dalgaard, M. R. Madsen, M. M. Pohl, E. Welter, P. Lamagni, K. B. Buhl, M. Bremholm, M. Beller, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, ACS Catal., 2018, 8, 6255-6264.
- Y. Hou, Y.-B. Huang, Y.-L. Liang, G.-L. Chai, J.-D. Yi, T. Zhang, K.-T. Zang, J. Luo, R. Xu, H. Lin, S.-Y. Zhang, H.-M. Wang and R. Cao, *CCS Chem.*, 2019, 1, 384-395.
- 174. Z. Ma, X. Zhang, D. Wu, X. Han, L. Zhang, H. Wang, F. Xu, Z. Gao and K. Jiang, J. *Colloid Interf. Sci.*, 2020, **570**, 31-40.
- 175. P. Lu, J. Zhang, H. He, M. Wang, Z. Luo, D. Gao, Z. Liu, X. Wang, M. Yuan, S. Dipazir,

H. Zhao, Y. Xie and G. Zhang, J. Power Sources, 2020, 449, 227496.

- X. Rong, H. J. Wang, X. L. Lu, R. Si and T. B. Lu, Angew. Chem. Int. Ed., 2020, 59, 1961-1965.
- N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo, A. S. Varela, B. Roldan Cuenya and P. Strasser, *Chem. Sci.*, 2018, 9, 5064-5073.
- 178. Q. Cheng, K. Mao, L. Ma, L. Yang, L. Zou, Z. Zou, Z. Hu and H. Yang, ACS Energy Lett., 2018, 3, 1205-1211.
- J. Jia, H. Yang, G. Wang, P. Huang, P. Cai and Z. Wen, *ChemElectroChem*, 2018, 5, 471-477.
- 180. E. Li, F. Yang, Z. Wu, Y. Wang, M. Ruan, P. Song, W. Xing and W. Xu, Small, 2018, 14, 1702827.
- 181. H. N. Zhang, J. Wang, Z. Zhao, H. F. Zhao, M. Cheng, A. N. Li, C. W. Wang, J. Y. Wang and J. Z. Wang, *Green Chem.*, 2018, 20, 3521-3529.
- 182. J. Gu, C. S. Hsu, L. Bai, H. M. Chen and X. Hu, Science, 2019, 364, 1091-1094.
- 183. F. Pan, B. Li, E. Sarnello, S. Hwang, Y. Gang, X. Feng, X. Xiang, N. M. Adli, T. Li, D. Su, G. Wu, G. Wang and Y. Li, *Nano Energy*, 2020, 68, 104384.
- 184. H. Zhong, F. Meng, Q. Zhang, K. Liu and X. Zhang, *Nano Res.*, 2019, **12**, 2318-2323.
- 185. F. Quan, G. Zhan, H. Shang, Y. Huang, F. Jia, L. Zhang and Z. Ai, *Green Chem.*, 2019, 21, 3256-3262.
- 186. X. S. Wang, Y. Y. Pan, H. Ning, H. M. Wang, D. L. Guo, W. H. Wang, Z. X. Yang, Q. S. Zhao, B. X. Zhang, L. R. Zheng, J. L. Zhang and M. B. Wu, *Appl. Catal. B Environ.*, 2020, 266, 118630.
- J. Tuo, Y. Zhu, L. Cheng, Y. Li, X. Yang, J. Shen and C. Li, *ChemSusChem*, 2019, 12, 2644-2650.
- 188. H. Zhang, J. Li, S. Xi, Y. Du, X. Hai, J. Wang, H. Xu, G. Wu, J. Zhang, J. Lu and J. Wang, Angew. Chem. Int. Ed., 2019, 58, 14871-14876.
- C. Hu, S. Bai, L. Gao, S. Liang, J. Yang, S.-D. Cheng, S.-B. Mi and J. Qiu, ACS Catal., 2019, 9, 11579-11588.
- 190. C. Hu, Y. Mu, S. Bai, J. Yang, L. Gao, S.-D. Cheng, S.-B. Mi and J. Qiu, *Carbon*, 2019, 153, 609-616.

- Y. Zhu, X. Li, X. Wang, K. Lv, G. Xiao, J. Feng, X. Jiang and M. Fang, *Chemistryselect*, 2020, 5, 1282-1287.
- 192. P. Su, K. Iwase, S. Nakanishi, K. Hashimoto and K. Kamiya, *Small*, 2016, **12**, 6083-6089.
- 193. X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu and Y. Xie, J. Am. Chem. Soc., 2017, 139, 14889-14892.
- 194. F. Pan, W. Deng, C. Justiniano and Y. Li, *Appl. Catal. B Environ.*, 2018, 226, 463-472.
- Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S.-Z. Yang, C. Liu, J. G. Chen and S. P. Jiang, *Appl. Catal. B Environ.*, 2019, 243, 294-303.
- 196. H.-Y. Jeong, M. Balamurugan, V. S. K. Choutipalli, E.-s. Jeong, V. Subramanian, U. Sim and K. T. Nam, J. Mater. Chem. A, 2019, 7, 10651-10661.
- 197. K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang, X. Ge, W. Zhang and L. Liu, *Small*, 2019, 15, e1903668.
- 198. F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang and Y. Li, J. Mater. Chem. A, 2019, 7, 26231-26237.
- 199. C. F. Wen, F. Mao, Y. Liu, X. Y. Zhang, H. Q. Fu, L. R. Zheng, P. F. Liu and H. G. Yang, ACS Catal., 2019, 10, 1086-1093.
- C.-Z. Yuan, K. Liang, X.-M. Xia, Z. K. Yang, Y.-F. Jiang, T. Zhao, C. Lin, T.-Y. Cheang,
 S.-L. Zhong and A.-W. Xu, *Catal. Sci. Technol.*, 2019, 9, 3669-3674.
- 201. C.-Z. Yuan, H.-B. Li, Y.-F. Jiang, K. Liang, S.-J. Zhao, X.-X. Fang, L.-B. Ma, T. Zhao, C. Lin and A.-W. Xu, *J. Mater. Chem. A*, 2019, 7, 6894-6900.
- Q. Fan, P. Hou, C. Choi, T.-S. Wu, S. Hong, F. Li, Y.-L. Soo, P. Kang, Y. Jung and Z. Sun, *Adv. Energy Mater.*, 2020, 10, 1903068.
- 203. S. Zhao, G. Chen, G. Zhou, L.-C. Yin, J.-P. Veder, B. Johannessen, M. Saunders, S.-Z.
 Yang, R. De Marco, C. Liu and S. P. Jiang, *Adv. Funct. Mater.*, 2020, 30, 1906157.
- S. He, D. Ji, J. Zhang, P. Novello, X. Li, Q. Zhang, X. Zhang and J. Liu, *J. Phys. Chem. B*, 2020, **124**, 511-518.
- 205. W. Zheng, C. Guo, J. Yang, F. He, B. Yang, Z. Li, L. Lei, J. Xiao, G. Wu and Y. Hou, *Carbon*, 2019, **150**, 52-59.
- 206. R. Daiyan, X. Lu, X. Tan, X. Zhu, R. Chen, S. C. Smith and R. Amal, ACS Appl. Energy

Mater., 2019, 2, 8002-8009.

- 207. S. Ye, G. Fan, J. Xu, L. Yang and F. Li, *Electrochim. Acta*, 2020, **334**, 135583.
- W. Kou, Y. Zhang, J. Dong, C. Mu and L. Xu, ACS Appl. Energy Mater., 2020, 3, 1875-1882.
- 209. W. Zhu, J. Fu, J. Liu, Y. Chen, X. Li, K. Huang, Y. Cai, Y. He, Y. Zhou, D. Su, J.-J. Zhu and Y. Lin, *Appl. Catal. B Environ.*, 2020, 264, 118502.
- D. Tan, C. Cui, J. Shi, Z. Luo, B. Zhang, X. Tan, B. Han, L. Zheng, J. Zhang and J. Zhang, *Nano Res.*, 2019, 12, 1167-1172.
- 211. X. Wang, D. Wu, C. Dai, C. Xu, P. Sui, R. Feng, Y. Wei, X.-Z. Fu and J.-L. Luo, J. Mater. Chem. A, 2020, 8, 5105-5114.
- 212. Z. Chen, K. Mou, S. Yao and L. Liu, *ChemSusChem*, 2018, 11, 2944-2952.
- 213. Y. Guo, H. Yang, X. Zhou, K. Liu, C. Zhang, Z. Zhou, C. Wang and W. Lin, J. Mater. Chem. A, 2017, 5, 24867-24873.
- 214. Y. Ye, F. Cai, H. Li, H. Wu, G. Wang, Y. Li, S. Miao, S. Xie, R. Si, J. Wang and X. Bao, *Nano Energy*, 2017, **38**, 281-289.
- 215. Y. Zhao, J. J. Liang, C. Y. Wang, J. M. Ma and G. G. Wallace, *Adv. Energy Mater.*, 2018, 8, 1702524.
- 216. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, J. Am. Chem. Soc., 2017, 139, 8078-8081.
- 217. X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu and Y. Li, *Angew. Chem. Int. Ed.*, 2018, 130, 1962-1966.
- 218. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, 140, 4218-4221.
- Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao and Y. Lin, *Appl. Catal. B Environ.*, 2019, 240, 234-240.
- 220. H. Yang, Q. Lin, Y. Wu, G. Li, Q. Hu, X. Chai, X. Ren, Q. Zhang, J. Liu and C. He, *Nano Energy*, 2020, **70**, 104454.
- 221. H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W.

Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang and B. Liu, *Nature Energy*, 2018, **3**, 140-147.

- 222. T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu and H. Wang, Joule, 2019, 3, 265-278.
- Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders, M. R. Rowles, M. Cheng,
 C. Liu, M. F. Chisholm, R. De Marco, H.-M. Cheng, S.-Z. Yang and S. P. Jiang, *Adv. Mater.*, 2018, 30, 1706287-1706287.
- 224. C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang and X. Bao, *Energy Environ. Sci.*, 2018, 11, 1204-1210.
- 225. H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu and C. He, *Nat. Commun.*, 2020, **11**, 593.
- W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang, M. Gu, F. He, Y. Xia, Z. Xia, Z. Li, B. Yang, L. Lei, C. Yuan, Q. He, M. Qiu and X. Feng, *Adv. Funct. Mater.*, 2019, 30, 1907658.
- 227. Y. F. Wang, Z. Chen, P. Han, Y. H. Du, Z. X. Gu, X. Xu and G. F. Zheng, ACS Catal., 2018, 8, 7113-7119.
- X. L. Jiang, H. B. Li, J. P. Xiao, D. F. Gao, R. Si, F. Yang, Y. S. Li, G. X. Wang and X. H. Bao, *Nano Energy*, 2018, **52**, 345-350.
- 229. W. Bi, X. Li, R. You, M. Chen, R. Yuan, W. Huang, X. Wu, W. Chu, C. Wu and Y. Xie, *Adv Mater*, 2018, **30**, e1706617.
- G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W.-F. Lin and H. Dai, *Energy Environ. Sci.*, 2019, 12, 1317-1325.
- 231. L. Zhao, Y. Zhang, L. B. Huang, X. Z. Liu, Q. H. Zhang, C. He, Z. Y. Wu, L. J. Zhang, J. Wu, W. Yang, L. Gu, J. S. Hu and L. J. Wan, *Nat. Commun.*, 2019, **10**, 1278.
- 232. F. Li, S. Hong, T.-S. Wu, X. Li, J. Masa, Y.-L. Soo and Z. Sun, ACS Appl. Energy Mater., 2019, 2, 8836-8842.
- D. M. Koshy, S. Chen, D. U. Lee, M. B. Stevens, A. M. Abdellah, S. M. Dull, G. Chen, D. Nordlund, A. Gallo, C. Hahn, D. C. Higgins, Z. Bao and T. F. Jaramillo, *Angew. Chem. Int. Ed.*, 2020, 59, 4043-4050.
- 234. S. Liu, H. B. Yang, S. F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang,

Y. Huang, T. Zhang and B. Liu, Angew. Chem. Int. Ed., 2019, 59, 798-803.

- M. Jia, S. Hong, T.-S. Wu, X. Li, Y.-L. Soo and Z. Sun, Chem. Commun., 2019, 55, 12024-12027.
- J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li and Y. Wu, Angew. Chem. Int. Ed., 2018, 57, 14095-14100.
- 237. B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu, F. Zhang, C. Lu, Z. Su, X. Tan, X. Cheng, B. Han, L. Zheng and J. Zhang, *Nat. Commun.*, 2019, 10, 2980.
- E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X. Zheng, Y. Wang, L. Zheng, C. Chen, D. Wang, J. Zhang and Y. Li, *J. Am. Chem. Soc.*, 2019, 141, 16569-16573.
- 239. Q. He, J. H. Lee, D. Liu, Y. Liu, Z. Lin, Z. Xie, S. Hwang, S. Kattel, L. Song and J. G. Chen, *Adv. Funct. Mater.*, 2020, **30**, 2000407.
- 240. J. Liu, X. Kong, L. Zheng, X. Guo, X. Liu and J. Shui, ACS Nano, 2020, 14, 1093-1101.
- 241. Y. F. Li, C. Chen, R. Cao, Z. W. Pan, H. He and K. B. Zhou, *Appl. Catal. B Environ.*, 2020, 268, 118747.
- 242. J. Jiao, R. Lin, S. Liu, W.-C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S.-F. Hung, H. M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen and Y. Li, *Nat. Chem.*, 2019, **11**, 222-228.
- 243. Z. Miao, P. Hu, C. Nie, H. Xie, W. Fu and Q. Li, J. Energy Chem., 2019, 38, 114-118.
- 244. S. Guo, S. Zhao, X. Wu, H. Li, Y. Zhou, C. Zhu, N. Yang, X. Jiang, J. Gao, L. Bai, Y. Liu, Y. Lifshitz, S. T. Lee and Z. Kang, *Nat. Commun.*, 2017, 8, 1828.
- 245. X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang and H. Wang, *Nat. Commun.*, 2017, 8, 14675.
- 246. M. Jia, Tai-Sing Wu, C. Ma, P. Kang, Q. F. Hengcong Tao, Song Hong, S. Liu, Yun-Liang Soo, J. Q. Z. S. Yousung Jung, *Chem. Sci.*, 2018, 9, 8775-8780.
- 247. N. Morlanés, K. Takanabe and V. Rodionov, ACS Catal., 2016, 6, 3092-3095.
- 248. Y. Cheng, J.-P. Veder, L. Thomsen, S. Zhao, M. Saunders, R. Demichelis, C. Liu, R. De Marco and S. P. Jiang, J. Mater. Chem. A, 2018, 6, 1370-1375.
- 249. X.-M. Hu, M. H. Rønne, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, Angew. Chem. Int. Ed., 2017, 56, 6468-6472.

- A. Tatin, C. Comminges, B. Kokoh, C. Costentin, M. Robert and J.-M. Savéant, *P. Nat. Acad. Sci.*, 2016, **113**, 5526-5529.
- J. Choi, P. Wagner, R. Jalili, J. Kim, D. R. MacFarlane, G. G. Wallace and D. L. Officer, Adv. Energy Mater., 2018, 8, 1801280.
- 252. A. Maurin and M. Robert, J. Am. Chem. Soc., 2016, 138, 2492-2495.
- M. Wang, L. Chen, T. C. Lau and M. Robert, *Angew. Chem. Int. Ed.*, 2018, 57, 7769-7773.
- J. Choi, J. Kim, P. Wagner, S. Gambhir, R. Jalili, S. Byun, S. Sayyar, Y. M. Lee, D. R. MacFarlane, G. G. Wallace and D. L. Officer, *Energy Environ. Sci.*, 2019, 12, 747-755.
- 255. C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang and X. Zhuang, *Adv. Funct. Mater.*, 2019, **29**, 1806884.
- 256. L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang and X. Bao, *Adv. Mater.*, 2019, **31**, 1903470.
- S. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert and C. P. Berlinguette, *Science*, 2019, 365, 367-369.
- 258. L. He, X. Sun, H. Zhang and F. Shao, Angew. Chem. Int. Ed., 2018, 130, 12633-12637.
- 259. P. Su, K. Iwase, T. Harada, K. Kamiya and S. Nakanishi, Chem. Sci., 2018, 9, 3941-3947.
- 260. S. Dou, J. Song, S. Xi, Y. Du, J. Wang, Z. F. Huang, Z. J. Xu and X. Wang, Angew. Chem. Int. Ed., 2019, 131, 4081-4085.
- M. Zhu, J. Chen, L. Huang, R. Ye, J. Xu and Y. F. Han, *Angew. Chem. Int. Ed.*, 2019, 58, 6595-6599.
- 262. A. De Riccardis, M. Lee, R. V. Kazantsev, A. J. Garza, G. Zeng, D. M. Larson, E. L. Clark, P. Lobaccaro, P. W. W. Burroughs, E. Bloise, J. W. Ager, A. T. Bell, M. Head-Gordon, G. Mele and F. M. Toma, ACS Appl. Mater. Interfaces, 2020, 12, 5251-5258.
- 263. J. Du, Z.-L. Lang, Y.-Y. Ma, H.-Q. Tan, B.-L. Liu, Y.-H. Wang, Z.-H. Kang and Y.-G. Li, *Chem. Sci.*, 2020, **11**, 3007-3015.
- 264. C. He, Y. Zhang, Y. Zhang, L. Zhao, L. P. Yuan, J. Zhang, J. Ma and J. S. Hu, Angew. Chem. Int. Ed., 2020, 132, 4944-4949.
- G. Neri, J. J. Walsh, G. Teobaldi, P. M. Donaldson and A. J. Cowan, *Nat. Catal.*, 2018, 1, 952-959.

- 266. B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B. A. Rosen, R. Haasch, J. Abiade, A. L. Yarin and A. Salehi-Khojin, *Nat. Commun.*, 2013, 4, 2819.
- 267. J. Xu, Y. Kan, R. Huang, B. Zhang, B. Wang, K. H. Wu, Y. Lin, X. Sun, Q. Li, G. Centi and D. Su, *ChemSusChem*, 2016, 9, 1085-1089.
- 268. J. Wu, M. Liu, P. P. Sharma, R. M. Yadav, L. Ma, Y. Yang, X. Zou, X.-D. Zhou, R. Vajtai and B. I. Yakobson, *Nano Lett.*, 2015, 16, 466-470.
- 269. J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B. I. Yakobson and J. Lou, *ACS Nano*, 2015, 9, 5364-5371.
- P. P. Sharma, J. Wu, R. M. Yadav, M. Liu, C. J. Wright, C. S. Tiwary, B. I. Yakobson, J. Lou, P. M. Ajayan and X.-D. Zhou, *Angew. Chem. Int. Ed.*, 2015, 54, 13701-13705.
- 271. H.-R. M. Jhong, C. E. Tornow, B. Smid, A. A. Gewirth, S. M. Lyth and P. J. A. Kenis, *ChemSusChem*, 2017, 10, 1094-1099.
- 272. B. Zhang, T.-J. Zhao, W.-J. Feng, Y.-X. Liu, H.-H. Wang, H. Su, L.-B. Lv, X.-H. Li and J.-S. Chen, *Nano Res.*, 2018, 11, 2450-2459.
- 273. F. Li, M. Xue, G. P. Knowles, L. Chen, D. R. MacFarlane and J. Zhang, *Electrochim. Acta*, 2017, **245**, 561-568.
- 274. X. Cui, Z. Pan, L. Zhang, H. Peng and G. Zheng, Adv. Energy Mater., 2017, 7, 1701456.
- R. Wang, X. Sun, S. Ould-Chikh, D. Osadchii, F. Bai, F. Kapteijn and J. Gascon, ACS Appl. Mater. Interfaces, 2018, 10, 14751-14758.
- J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang and J. Yao, Angew. Chem. Int. Ed., 2018, 57, 9640-9644.
- 277. F. Pan, B. Li, X. Xiang, G. Wang and Y. Li, ACS Catal., 2019, 9, 2124-2133.
- W. Ni, Y. Xue, X. Zang, C. Li, H. Wang, Z. Yang and Y. M. Yan, ACS Nano, 2020, 14, 2014-2023.
- S. Liu, H. B. Yang, X. Huang, L. H. Liu, W. Z. Cai, J. J. Gao, X. N. Li, T. Zhang, Y. Q. Huang and B. Liu, *Adv. Funct. Mater.*, 2018, 28, 1800499.
- 280. X. Zhu, C. Tian, H. Wu, Y. He, L. He, H. Wang, X. Zhuang, H. Liu, C. Xia and S. Dai, ACS. Appl. Mater. Interf., 2018, 10, 43588-43594.
- M. Kuang, A. Guan, Z. Gu, P. Han, L. Qian and G. Zheng, *Nano Res.*, 2019, **12**, 2324-2329.

- C. Li, Y. Wang, N. Xiao, H. Li, Y. Ji, Z. Guo, C. Liu and J. Qiu, *Carbon*, 2019, 151, 46 52.
- C. Ma, P. Hou, X. Wang, Z. Wang, W. Li and P. Kang, *Appl. Catal. B Environ.*, 2019, 250, 347-354.
- 284. N. Meng, W. Zhou, Y. Yu, Y. Liu and B. Zhang, ACS Catal., 2019, 9, 10983-10989.
- 285. F. Pan, B. Li, W. Deng, Z. Du, Y. Gang, G. Wang and Y. Li, *Appl. Catal. B Environ.*, 2019, 252, 240-249.
- 286. W. Wang, L. Shang, G. Chang, C. Yan, R. Shi, Y. Zhao, G. I. N. Waterhouse, D. Yang and T. Zhang, *Adv. Mater.*, 2019, **31**, 1808276.
- 287. P. Yao, Y. Qiu, T. Zhang, P. Su, X. Li and H. Zhang, ACS Sustain. Chem. Eng., 2019, 7, 5249-5255.
- 288. H. Li, N. Xiao, M. Hao, X. Song, Y. Wang, Y. Ji, C. Liu, C. Li, Z. Guo, F. Zhang and J. Qiu, *Chem. Eng. J.* 2018, **351**, 613-621.
- 289. B. Zhang, J. Zhang, F. Zhang, L. Zheng, G. Mo, B. Han and G. Yang, *Adv. Funct. Mater.*, 2019, 30, 1906194.
- Y. Zheng, P. Cheng, J. Xu, J. Han, D. Wang, C. Hao, H. R. Alanagh, C. Long, X. Shi and Z. Tang, *Nanoscale*, 2019, 11, 4911-4917.
- 291. Y. Zhu, K. L. Lv, X. P. Wang, H. Q. Yang and G. Z. Xiao, J. Mater. Chem. A, 2019, 7, 14895-14903.
- 292. H. Yang, Y. Wu, Q. Lin, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He and Z. Lin, Angew. Chem. Int. Ed., 2018, 57, 15476-15480.
- W. Li, M. Seredych, E. Rodriguez-Castellon and T. J. Bandosz, *ChemSusChem*, 2016, 9, 606-616.
- 294. X. Cai, B. Qin, Y. Li, Q. Zhang, G. Yang, H. Wang, Y. Cao, H. Yu and F. Peng, *ChemElectroChem*, 2020, 7, 320-327.
- 295. H. Han, S. Park, D. Jang, S. Lee and W. B. Kim, ChemSusChem, 2020, 13, 539-547.
- 296. G. Wang, M. Liu, J. Jia, H. Xu, B. Zhao, K. Lai, C. Tu and Z. Wen, *ChemCatChem*, 2020, 12, 2203-2208.
- 297. C. Chen, X. Sun, X. Yan, Y. Wu, H. Liu, Q. Zhu, B. B. A. Bediako and B. Han, Angew. Chem. Int. Ed., 2020, 132, 11216-11222.

- 298. M. Chen, S. Wang, H. Zhang, P. Zhang, Z. Tian, M. Lu, X. Xie, L. Huang and W. Huang, *Nano Res.*, 2020, **13**, 729–735.
- N. Wanninayake, Q. Ai, R. Zhou, M. A. Hoque, S. Herrell, M. I. Guzman, C. Risko and D. Y. Kim, *Carbon*, 2020, 157, 408-419.
- 300. Q. Wu, J. Gao, J. Feng, Q. Liu, Y. Zhou, S. Zhang, M. Nie, Y. Liu, J. Zhao, F. Liu, J. Zhong and Z. Kang, J. Mater. Chem. A, 2020, 8, 1205-1211.
- 301. L. Ye, Y. Ying, D. Sun, Z. Zhang, L. Fei, Z. Wen, J. Qiao and H. Huang, Angew. Chem. Int. Ed., 2020, 59, 3244-3251.
- 302. G. S. Prakash, F. A. Viva and G. A. Olah, J. Power Sources, 2013, 223, 68-73.
- 303. Q. Wang, H. Dong and H. Yu, J. Power Sources, 2014, 271, 278-284.
- 304. J. Wu, P. P. Sharma, B. H. Harris and X.-D. Zhou, J. Power Sources, 2014, 258, 189-194.
- 305. F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei and Y. Xie, *Nat. Commun.*, 2016, 7, 12697.
- Q. Zhu, J. Ma, X. Kang, X. Sun, H. Liu, J. Hu, Z. Liu and B. Han, *Angew. Chem. Int. Ed.*, 2016, 55, 9012-9016.
- 307. S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734-1737.
- 308. Y. Yiliguma, Z. Wang, C. Yang, A. Guan, L. Shang, A. M. Al-Enizi, L. Zhang and G. Zheng, J. Mater. Chem. A, 2018, 6, 20121-20127.
- 309. C. L. Liang, B. Kim, S. Z. Yang, Y. Liu, C. F. Woellner, Z. Y. Li, R. Vajtai, W. Yang, J. J. Wu, P. J. A. Kenis and P. M. Ajayan, *J. Mater. Chem. A*, 2018, 6, 10313-10319.
- 310. W. Deng, L. Zhang, L. Li, S. Chen, C. Hu, Z. J. Zhao, T. Wang and J. Gong, J. Am. Chem. Soc., 2019, 141, 2911-2915.
- C. Hu, L. Zhang, L. Li, W. Zhu, W. Deng, H. Dong, Z.-J. Zhao and J. Gong, *Sci. China-Chem.*, 2019, 62, 1030-1036.
- 312. J. Huang, X. Guo, X. Huang and L. Wang, *Electrochim. Acta*, 2019, **325**, 134923.
- 313. Z. Chen, S. Yao and L. Liu, J. Mater. Chem. A, 2017, 5, 24651-24656.
- 314. F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane and J. Zhang, *Nano Energy*, 2017, **31**, 270-277.
- L. Lu, X. Sun, J. Ma, Q. Zhu, C. Wu, D. Yang and B. Han, *Sci. China-Chem.*, 2018, 61, 228-235.

- 316. J. Huang, X. Guo, Y. Wei, Q. Hu, X. Yu and L. Wang, J. CO2 Util., 2019, 33, 166-170.
- 317. C. Hu, L. Li, W. Deng, G. Zhang, W. Zhu, X. Yuan, L. Zhang, Z. J. Zhao and J. Gong, *ChemSusChem*, 2020, DOI: 10.1002/cssc.202000557.
- 318. C. Zhao and J. Wang, Chem. Eng. J., 2016, 293, 161-170.
- 319. Y. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986-1989.
- W. Lee, Y. E. Kim, M. H. Youn, S. K. Jeong and K. T. Park, *Angew. Chem. Int. Ed.*, 2018, 57, 6883-6887.
- 321. J. Wu, F. G. Risalvato, S. Ma and X.-D. Zhou, J. Mater. Chem. A, 2014, 2, 1647-1651.
- 322. Q. Lai, W. Yuan, W. Huang and G. Yuan, Appl. Surf. Sci., 2020, 508, 145221.
- 323. B. Zhang, Z. Guo, Z. Zuo, W. Pan and J. Zhang, *Appl. Catal. B Environ.*, 2018, 239, 441-449.
- 324. X. Zu, X. Li, W. Liu, Y. Sun, J. Xu, T. Yao, W. Yan, S. Gao, C. Wang, S. Wei and Y. Xie, *Adv. Mater.*, 2019, **31**, e1808135.
- 325. H. Li, N. Xiao, Y. Wang, C. Liu, S. Zhang, H. Zhang, J. Bai, J. Xiao, C. Li, Z. Guo, S. Zhao and J. Qiu, *J. Mater. Chem. A*, 2020, **8**, 1779-1786.
- 326. D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E.-H. Kim and S. I. Woo, *ChemSusChem*, 2015, 8, 3092-3098.
- Y. Zhang, X. Zhang, A. M. Bond and J. Zhang, *Phys. Chem. Chem. Phys.*, 2018, 20, 5936-5941.
- B. Kumar, V. Atla, J. P. Brian, S. Kumari, T. Q. Nguyen, M. Sunkara and J. M. Spurgeon, Angew. Chem. Int. Ed., 2017, 56, 3645-3649.
- R. Daiyan, X. Lu, W. H. Saputera, Y. H. Ng and R. Amal, ACS Sustain. Chem. Eng., 2018, 6, 1670-1679.
- D. Li, J. Wu, T. Liu, J. Liu, Z. Yan, L. Zhen and Y. Feng, *Chem. Eng. J.*, 2019, 375, 122024.
- 331. T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang, S. Wang, S. Ji, D. Yan, L. Luo, W. Liu and X. Sun, *Chin.Chem. Lett.*, 2019, **30**, 2274-2278.
- 332. N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu, H. Yang, P. Ding and Y. Li, J. Mater. Chem. A, 2019, 7, 1267-1272.
- 333. S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang and X. W. D. Lou, Angew. Chem. Int. Ed.,

2019, 58, 8499-8503.

- X. Zhang, Z. Chen, K. Mou, M. Jiao, X. Zhang and L. Liu, *Nanoscale*, 2019, **11**, 18715-18722.
- F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, *Angew. Chem. Int. Ed.*, 2017, 56, 505-509.
- 336. Q. Zhang, Y. Zhang, J. Mao, J. Liu, Y. Zhou, D. Guay and J. Qiao, *ChemSusChem*, 2019, 12, 1443-1450.
- Z. Chen, X. Zhang, M. Jiao, K. Mou, X. Zhang and L. Liu, *Adv. Energy Mater.*, 2020, 10, 1903664.
- 338. Y. Fu, T. Wang, W. Zheng, C. Lei, B. Yang, J. Chen, Z. Li, L. Lei, C. Yuan and Y. Hou, ACS Appl. Mater. Interfaces, 2020, 12, 16178-16185.
- 339. L. Fan, Z. Xia, M. Xu, Y. Lu and Z. Li, Adv. Funct. Mater., 2018, 28, 1706289.
- R. Daiyan, E. C. Lovell, N. M. Bedford, W. H. Saputera, K. H. Wu, S. Lim, J. Horlyck, Y. H. Ng, X. Lu and R. Amal, *Adv. Sci.*, 2019, 6, 1900678.
- 341. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu and J. Zeng, Angew. Chem. Int. Ed., 2018, 57, 10954-10958.
- 342. T. Yuan, Z. Hu, Y. Zhao, J. Fang, J. Lv, Q. Zhang, Z. Zhuang, L. Gu and S. Hu, Nano Lett, 2020, 20, 2916-2922.
- 343. Y. Pi, J. Guo, Q. Shao and X. Huang, *Nano Energy*, 2019, **62**, 861-868.
- 344. B. He, L. Jia, Y. Cui, W. Zhou, J. Sun, J. Xu, Q. Wang and L. Zhao, ACS Appl. Energy Mater., 2019, 2, 7655-7662.
- 345. Y. He, W.-J. Jiang, Y. Zhang, L.-B. Huang and J.-S. Hu, J. Mater. Chem. A, 2019, 7, 18428-18433.
- 346. S. Huo, Z. Weng, Z. Wu, Y. Zhong, Y. Wu, J. Fang and H. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 28519-28526.
- 347. C. Chen, Y. Pang, F. Zhang, J. Zhong, B. Zhang and Z. Cheng, *J. Mater. Chem. A*, 2018, 6, 19621-19630.
- 348. X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang, Z. Zhu, L. Peng, Y. Liu and J. Qiao, J. Mater. Chem. A, 2019, 7, 3197-3205.
- 349. X. Jiang, X. Wang, Z. Liu, Q. Wang, X. Xiao, H. Pan, M. Li, J. Wang, Y. Shao, Z. Peng,

Y. Shen and M. Wang, Appl. Catal. B Environ., 2019, 259, 118040.

- 350. J. Wang, J. Zou, X. Hu, S. Ning, X. Wang, X. Kang and S. Chen, *J. Mater. Chem. A*, 2019, **7**, 27514-27521.
- J. Wang, Y. Ji, Q. Shao, R. Yin, J. Guo, Y. Li and X. Huang, *Nano Energy*, 2019, 59, 138-145.
- 352. L. Peng, Y. Wang, I. Masood, B. Zhou, Y. Wang, J. Lin, J. Qiao and F.-Y. Zhang, *Appl. Catal. B Environ.*, 2020, **62**, 861-868.
- 353. Y. Wei, J. Liu, F. Cheng and J. Chen, J. Mater. Chem. A, 2019, 7, 19651-19656.
- 354. D. X. Yang, Q. G. Zhu, X. F. Sun, C. J. Chen, L. Lu, W. W. Guo, Z. M. Liu and B. X. Han, *Green Chem.*, 2018, 20, 3705-3710.
- 355. A. W. Kahsay, K. B. Ibrahim, M.-C. Tsai, M. K. Birhanu, S. A. Chala, W.-N. Su and B.-J. Hwang, *Catal. Lett.*, 2019, **149**, 860-869.
- 356. J. Li, Y. Kuang, Y. Meng, X. Tian, W. H. Hung, X. Zhang, A. Li, M. Xu, W. Zhou, C. S. Ku, C. Y. Chiang, G. Zhu, J. Guo, X. Sun and H. Dai, *J. Am. Chem. Soc.*, 2020, 142, 7276-7282.
- W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang and F. Jiao, J. Am. Chem. Soc., 2017, 139, 1885-1893.
- 358. R. He, X. Yuan, P. Shao, T. Duan and W. Zhu, Small, 2019, 15, 1904882.
- Y. W. Choi, F. Scholten, I. Sinev and B. Roldan Cuenya, J. Am. Chem. Soc., 2019, 141, 5261-5266.
- X. Zhang, F. Li, Y. Zhang, A. M. Bond and J. Zhang, J. Mater. Chem. A, 2018, 6, 7851-7858.
- 361. X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinrück, K. Lim, Y. Li, M. F. Toney, K. Chan and Y. Cui, *Nat. Catal.*, 2018, 2, 55-61.
- 362. G. B. Wen, D. U. Lee, B. H. Ren, F. M. Hassan, G. P. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Y. Bai, L. Yang and Z. W. Chen, *Adv. Energy Mater.*, 2018, 8, 1802427.
- 363. V. S. S. Mosali, X. Zhang, Y. Zhang, T. Gengenbach, S.-X. Guo, G. Puxty, M. D. Horne,
 A. M. Bond and J. Zhang, ACS Sustain. Chem. Eng., 2019, 7, 19453-19462.
- 364. P. Han, Z. J. Wang, M. Kuang, Y. F. Wang, J. N. Liu, L. F. Hu, L. P. Qian and G. F. Zheng, *Adv. Energy Mater.*, 2018, 8, 1801230.

- Z. Bitar, A. Fecant, E. Trela-Baudot, S. Chardon-Noblat and D. Pasquier, *Appl. Catal. B Environ.*, 2016, 189, 172-180.
- 366. F. Koleli, T. Atilan, N. Palamut, A. M. Gizir, R. Aydin and C. H. Hamann, J. Appl. Electrochem., 2003, **33**, 447-450.
- 367. Y. Kwon and J. Lee, *Electrocatalysis*, 2010, 1, 108-115.
- Z. He, J. Shen, Z. Ni, J. Tang, S. Song, J. Chen and L. Zhao, *Catal. Commun.*, 2015, 72, 38-42.
- 369. C. H. Lee and M. W. Kanan, ACS Catal., 2015, 5, 465-469.
- H. Wu, J. Song, C. Xie, Y. Hu, J. Ma, Q. Qian and B. Han, *Green Chem.*, 2018, 20, 4602-4606.
- M. Y. Fan, S. Garbarino, G. A. Botton, A. C. Tavares and D. Guay, *J. Mater. Chem. A*, 2017, 5, 20747-20756.
- 372. J. E. Pander, III, J. W. J. Lum and B. S. Yeo, J. Mater. Chem. A, 2019, 7, 4093-4101.
- 373. H. Wang, Z. Liang, M. Tang, G. Chen, Y. Li, W. Chen, D. Lin, Z. Zhang, G. Zhou, J. Li,
 Z. Lu, K. Chan, T. Tan and Y. Cui, *Joule*, 2019, 3, 1927-1936.
- 374. Y. F. Xing, M. Cui, P. F. Fan, J. J. Ren, C. Zhang, N. Li, X. F. Wen and X. P. Ji, *Mater. Chem. Phys.*, 2019, 237, 121826.
- 375. Z. Zhang, C. Liu, J. T. Brosnahan, H. Zhou, W. Xu and S. Zhang, J. Mater. Chem. A, 2019, 7, 23775-23780.
- 376. X. Lu, Y. Wu, X. Yuan and H. Wang, Angew. Chem. Int. Ed., 2019, 58, 4031-4035.
- 377. J. H. Koh, D. H. Won, T. Eom, N. K. Kim, K. D. Jung, H. Kim, Y. J. Hwang and B. K. Min, ACS Catal., 2017, 7, 5071-5077.
- 378. C. Zhu, Q. Wang and C. Wu, J. CO2 Util., 2020, 36, 96-104.
- 379. S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang and J.-L. Lee, *Nano Energy*, 2017, **39**, 44-52
- 380. C. W. Lee, J. S. Hong, K. D. Yang, K. Jin, J. H. Lee, H.-Y. Ahn, H. Seo, N.-E. Sung and K. T. Nam, ACS Catal., 2018, 8, 931-937.
- 381. X. Zhang, T. Lei, Y. Liu and J. Qiao, Appl. Catal. B Environ., 2017, 218, 46-50.
- 382. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li and Y. Li, *Nat. Commun.*, 2018, 9, 1320.

- Q. Wang, M. Ma, S. Zhang, K. Lu, L. Fu, X. Liu and Y. Chen, *ChemPlusChem*, 2020, 85, 672-678.
- 384. F. P. Garcia de Arquer, O. S. Bushuyev, P. De Luna, C. T. Dinh, A. Seifitokaldani, M. I. Saidaminov, C. S. Tan, L. N. Quan, A. Proppe, M. G. Kibria, S. O. Kelley, D. Sinton and E. H. Sargent, *Adv. Mater.*, 2018, **30**, 1802858.
- 385. P. Su, W. Xu, Y. Qiu, T. Zhang, X. Li and H. Zhang, ChemSusChem, 2018, 11, 848-853.
- 386. Y. Zhang, F. Li, X. Zhang, T. Williams, C. D. Easton, A. M. Bond and J. Zhang, J. Mater. Chem. A, 2018, 6, 4714-4720.
- 387. Y. Zhang, X. Zhang, Y. Ling, F. Li, A. M. Bond and J. Zhang, Angew. Chem. Int. Ed., 2018, 57, 13283-13287.
- 388. M. Zhao, Y. Gu, W. Gao, P. Cui, H. Tang, X. Wei, H. Zhu, G. Li, S. Yan, X. Zhang and Z. Zou, *Appl. Catal. B Environ.*, 2020, 266, 118625.
- 389. P. F. Liu, M. Y. Zu, L. R. Zheng and H. G. Yang, Chem. Commun., 2019, 55, 12392-12395.
- 390. S. X. Guo, Y. Zhang, X. Zhang, C. D. Easton, D. R. MacFarlane and J. Zhang, *ChemSusChem*, 2019, **12**, 1091-1100.
- 391. Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Z. Feng, Y. Li, W. Zhou and Y. Li, *Nat. Commun.*, 2019, **10**, 2807.
- S. Liu, X. F. Lu, J. Xiao, X. Wang and X. W. Lou, Angew. Chem. Int. Ed., 2019, 58, 13828-13833.
- 393. P. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu and G. Zhang, Nanoscale, 2019, 11, 7805-7812.
- 394. Z. Chen, K. Mou, X. Wang and L. Liu, Angew. Chem. Int. Ed., 2018, 57, 12790-12794.
- 395. F. L. Meng, Q. Zhang, K. H. Liu and X. B. Zhang, Chemistry, 2019, 26, 4013-4018.
- 396. T. Tran Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal and A. Tricoli, *Adv. Funct. Mater.*, 2019, 30, 1906478.
- 397. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman and B. Y. Xia, Angew. Chem. Int. Ed., 2020, 59, 10807-10813.
- 398. X. Yang, P. Deng, D. Liu, S. Zhao, D. Li, H. Wu, Y. Ma, B. Y. Xia, M. Li, C. Xiao and S. Ding, J. Mater. Chem. A, 2020, 8, 2472-2480.

- 399. P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen, F. Yang, L. Zhou, K. Qi, H. Liu and B. Y. Xia, ACS Catal., 2020, 10, 743-750.
- D. Wu, X. Shen, J. Liu, C. Wang, Y. Liang, X. Z. Fu and J. L. Luo, *Nanoscale*, 2019, 11, 22125-22133.
- F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, M. Mavrikakis and W. Xu, *Nat. Commun.*, 2020, 11, 1088.
- 402. Y. X. Duan, K. H. Liu, Q. Zhang, J. M. Yan and Q. Jiang, *Small Methods*, 2020, 4, 1900846.
- 403. D. Wu, W. Chen, X. Wang, X.-Z. Fu and J.-L. Luo, J. CO2 Util., 2020, 37, 353-359.
- 404. D. B. Zhang, Z. T. Tao, F. L. Feng, B. B. He, W. Zhou, J. Sun, J. M. Xu, Q. Wang and L.
 Zhao, *Electrochim. Acta*, 2020, **334**, 135563
- X. Zhang, X. Sun, S.-X. Guo, A. M. Bond and J. Zhang, *Energy Environ. Sci.*, 2019, 12, 1334-1340.
- 406. Meng Yang Zu, Le Zhang, Chongwu Wang, L. R. Zheng, a. H. G. Yang and J. Mater. Chem. A, 2018, 6, 16804-16809..
- 407. L. Jia, H. Yang, J. Deng, J. Chen, Y. Zhou, P. Ding, L. Li, N. Han and Y. Li, *Chinese J. Chem.*, 2019, **37**, 497-500.
- 408. J.-H. Zhou, K. Yuan, L. Zhou, Y. Guo, M.-Y. Luo, X.-Y. Guo, Q.-Y. Meng and Y.-W. Zhang, *Angew. Chem. Int. Ed.*, 2019, 58, 14197-14201.
- X. An, S. Li, A. Yoshida, T. Yu, Z. Wang, X. Hao, A. Abudula and G. Guan, *ACS Appl. Mater. Interfaces*, 2019, 11, 42114-42122.
- 410. Q. Li, X. Zhang, X. Zhou, Q. Li, H. Wang, J. Yi, Y. Liu and J. Zhang, *J. CO2 Util.*, 2020, 37, 106-112.
- P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup and N. Lock, *Adv. Funct. Mater.*, 2020, 30, 1910408.
- 412. R. Kortlever, I. Peters, S. Koper and M. T. Koper, ACS Catal., 2015, 5, 3916-3923.
- A. Klinkova, P. D. Luna, C.-T. Dinh, O. Voznyy, E. M. Larin, E. Kumacheva and E. H. Sargent, ACS Catal., 2016, 6, 8115-8120.
- 414. J. Xie, X. Wang, J. Lv, Y. Huang, M. Wu, Y. Wang and J. Yao, Angew. Chem. Int. Ed.,

2018, 57, 16996-17001.

- B. Jiang, X.-G. Zhang, K. Jiang, D.-Y. Wu and W.-B. Cai, J. Am. Chem. Soc., 2018, 140, 2880-2889.
- J. J. Humphrey, D. Plana, V. Celorrio, S. Sadasivan, R. P. Tooze, P. Rodríguez and D. J. Fermín, *ChemCatChem*, 2016, 8, 952-960.
- 417. J. Li, S.-X. Guo, F. Li, F. Li, X. Zhang, J. Ma, D. R. MacFarlane, A. M. Bond and J. Zhang, *ChemSusChem*, 2019, **12**, 4506-4515.
- 418. S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang and S. Yang, *Angew. Chem. Int. Ed.*, 2016, 55, 698-702.
- 419. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang and Y. Xie, *Nature*, 2016, **529**, 68-71.
- S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu, Q. Hu, Y. Sun, T. Yao, W. Zhang, S. Wei and Y. Xie, *Nat. Commun.*, 2017, 8, 14503.
- 421. Q. Zhang, A. He, Y. Yang, J. Du, Z. Liu and C. Tao, *J. Mater. Chem. A*, 2019, **7**, 24337-24346.
- 422. Z. Xia, M. Freeman, D. Zhang, B. Yang, L. Lei, Z. Li and Y. Hou, *ChemElectroChem*, 2018, **5**, 253-259.
- 423. W. Luo, W. Xie, M. Li, J. Zhang and A. Zuttel, J. Mater. Chem. A, 2019, 7, 4505-4515.
- J. Zhang, R. Yin, Q. Shao, T. Zhu and X. Huang, *Angew. Chem. Int. Ed.*, 2019, 58, 5609-5613.
- 425. W. Ma, S. Xie, X. G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Y. Wu and Y. Wang, *Nat. Commun.*, 2019, **10**, 892.
- 426. L. Liu, H. Gao, J. Feng, J. Feng, S. Zeng, H. Dong, Y. Bai, L. Liu and X. Zhang, *ChemCatchem*, 2020, **12**, 926-931.
- 427. X. Yuan, Y. Luo, B. Zhang, C. Dong, J. Lei, F. Yi, T. Duan, W. Zhu and R. He, *Chem. Commun.*, 2020, **56**, 4212-4215.
- 428. Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang, H. Huang, C. Ma and J. Zeng, *Nano Lett.*, 2019, **19**, 4029-4034.
- 429. X. Wang, X. Jiang, Q. Wang, T. Zhang, P. Li, M. Wang and Y. Shen, *Electrochim. Acta*, 2020, 340, 135948.

- 430. F. Li, M. Xue, J. Li, X. Ma, L. Chen, X. Zhang, D. R. MacFarlane and J. Zhang, Angew. Chem. Int. Ed., 2017, 56, 14718-14722.
- G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan, A. Yamaguchi and M. Miyauchi, J. Mater. Chem. A, 2017, 5, 12113-12119.
- 432. W. J. Dong, C. J. Yoo and J.-L. Lee, ACS Appl. Mater. Interfaces, 2017, 9, 43575-43582.
- 433. S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek and K. T. Park, ACS Sustain. Chem. Eng., 2016, 4, 1311-1318.
- 434. Z. B. Hoffman, T. S. Gray, K. B. Moraveck, T. B. Gunnoe and G. Zangari, *ACS Catal.*, 2017, **7**, 5381-5390.
- 435. T. Li, H. Wei, T. Liu, G. Zheng, S. Liu and J. L. Luo, ACS Appl. Mater. Interfaces, 2019, 11, 22346-22351.
- I. S. Kwon, T. T. Debela, I. H. Kwak, H. W. Seo, K. Park, D. Kim, S. J. Yoo, J.-G. Kim, J.
 Park and H. S. Kang, *J. Mater. Chem. A*, 2019, 7, 22879-22883.
- 437. Y.-X. Duan, F.-L. Meng, K.-H. Liu, S.-S. Yi, S.-J. Li, J.-M. Yan and Q. Jiang, *Adv. Mat.*, 2018, 30, e1706194-e1706194.
- S. Shen, J. He, X. Peng, W. Xi, L. Zhang, D. Xi, L. Wang, X. Liu and J. Luo, *J. Mater. Chem. A*, 2018, 6, 18960-18966.
- 439. Z. Chen, N. Wang, S. Yao and L. Liu, J. CO2 Util., 2017, 22, 191-196.
- 440. T. Shinagawa, G. O. Larrazábal, A. J. Martín, F. Krumeich and J. Pérez-Ramírez, ACS Catal., 2018, 8, 837-844.
- 441. Y. Deng, Y. Huang, D. Ren, A. D. Handoko, Z. W. Seh, P. Hirunsit and B. S. Yeo, ACS Appl. Mater. Interfaces, 2018, 10, 28572-28581.
- 442. Y. Huang, Y. Deng, A. D. Handoko, G. K. L. Goh and B. S. Yeo, *ChemSusChem*, 2018, 11, 320-326.
- 443. Z. Pan, K. Wang, K. Ye, Y. Wang, H.-Y. Su, B. Hu, J. Xiao, T. Yu, Y. Wang and S. Song, ACS Catal., 2020, 10, 3871-3880.
- 444. W. He, I. Liberman, I. Rozenberg, R. Ifraemov and I. Hod, *Angew. Chem. Int. Ed.*, 2020, 132, 39-8346.
- 445. Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu and B. Han, *Angew. Chem. Int. Ed.*, 2020, **59**, 8896-8901.

- 446. Z. Tao, Z. Wu, X. Yuan, Y. Wu and H. Wang, ACS Catal., 2019, 9, 10894-10898.
- 447. W. Ni, C. Li, X. Zang, M. Xu, S. Huo, M. Liu, Z. Yang and Y.-M. Yan, *Appl. Catal. B Environ.*, 2019, **259**, 118044.
- 448. X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen and B. Han, *Angew. Chem. Int. Ed.*, 2018, 130, 2451-2455.
- T. N. Huan, P. Simon, G. Rousse, I. Genois, V. Artero and M. Fontecave, *Chem. Sci.*, 2017, 8, 742-747.
- 450. S. Sen, D. Liu and G. T. R. Palmore, ACS Catal., 2014, 4, 3091-3095.
- 451. J. Qiao, M. Fan, Y. Fu, Z. Bai, C. Ma, Y. Liu and X.-D. Zhou, *Electrochim. Acta*, 2015, 153, 559-565.
- 452. J.-F. Xie, Y.-X. Huang, W.-W. Li, X.-N. Song, L. Xiong and H.-Q. Yu, *Electrochim. Acta*, 2014, **139**, 137-144.
- 453. D. Li, T. Liu, Z. Yan, L. Zhen, J. Liu, J. Wu and Y. Feng, ACS Appl. Mater. Interfaces, 2020, 12, 7030-7037.
- 454. P. Huang, S. Ci, G. Wang, J. Jia, J. Xu and Z. Wen, J. CO2 Util., 2017, 20, 27-33.
- 455. Q. Li, W. Zhu, J. Fu, H. Zhang, G. Wu and S. Sun, *Nano Energy*, 2016, 24, 1-9.
- 456. H. P. Yang, Q. Lin, H. W. Zhang, G. D. Li, L. D. Fan, X. Y. Chai, Q. L. Zhang, J. H. Liu and C. X. He, *Chem. Commun.*, 2018, **54**, 4108-4111.
- 457. H. Wang, J. Jia, P. Song, Q. Wang, D. Li, S. Min, C. Qian, L. Wang, Y. F. Li, C. Ma, T. Wu, J. Yuan, M. Antonietti and G. A. Ozin, *Angew. Chem. Int. Ed.*, 2017, 56, 7847-7852.
- S. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass and T. J. Meyer, *J. Am. Chem. Soc.*, 2014, **136**, 7845-7848.
- 459. H. X. Wang, Y. B. Chen, X. L. Hou, C. Y. Ma and T. W. Tan, *Green Chem.*, 2016, 18, 3250-3256.
- 460. N. Sreekanth, M. A. Nazrulla, T. V. Vineesh, K. Sailaja and K. L. Phani, *Chem. Commun.*, 2015, 51, 16061-16064.
- K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata and Y. Einaga, *Angew. Chem. Int. Ed.*, 2018, 57, 2639-2643.
- 462. Y. Cao, Z. Geng, W. Chen, F. Cai, G. Wang, Z. Wang and J. Zeng, *Chem. Commun.*, 2018, **54**, 3367-3370.
- 463. Z. P. Chen, K. W. Mou, S. Y. Yao and L. C. Liu, *J. Mater. Chem. A*, 2018, **6**, 11236-11243.
- 464. J. Huang and L. Wang, *Electrochim. Acta*, 2019, **319**, 569-576.
- D. P. Summers, S. Leach and K. W. Frese, J. Electroanal. Chem. Interf. Electrochem., 1986, 205, 219-232.
- 466. A. Bandi, J. Electrochem. Soc., 1990, 137, 2157-2160.
- 467. J. P. Popic, M. L. AvramovIvic and N. B. Vukovic, *J. Electroanal. Chem.*, 1997, 421, 105-110.
- 468. M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz and J. C. Flake, *J. Electrochem. Soc.*, 2011, **158**, E45-E49.
- 469. S. S. Hossain, S. U. Rahman and S. Ahmed, J. Nanomater., 2014, 2014, 9.
- 470. N. Spataru, K. Tokuhiro, C. Terashima, T. N. Rao and A. Fujishima, J. Appl. Electrochem., 2003, 33, 1205-1210.
- 471. H.-P. Yang, Y.-N. Yue, S. Qin, H. Wang and J.-X. Lu, *Green Chem.*, 2016, **18**, 3216-3220.
- 472. M. G. Kim, J. Jeong, Y. Choi, J. Park, E. Park, C. H. Cheon, N. K. Kim, B. K. Min and W. Kim, ACS Appl. Mater. Interfaces, 2020, 12, 11890-11897.
- 473. J. Qu, X. Zhang, Y. Wang and C. Xie, *Electrochim. Acta*, 2005, **50**, 3576-3580.
- 474. H.-P. Yang, S. Qin, H. Wang and J.-X. Lu, *Green Chem.*, 2015, 17, 5144-5148.
- 475. L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang and B. Han, *Angew. Chem. Int. Ed.*, 2018, 57, 14149-14153.
- 476. X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang and B. Han, *Angew. Chem. Int. Ed.*, 2016, **128**, 6883-6887.
- 477. A. P. Periasamy, R. Ravindranath, S. M. Senthil Kumar, W. P. Wu, T. R. Jian and H. T. Chang, *Nanoscale*, 2018, **10**, 11869-11880.
- 478. D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu and B. Han, *Nat. Commun.*, 2019, **10**, 677.
- 479. A. A. Ensafi, H. A. Alinajafi, M. Jafari-Asl and B. Rezaei, *J. Electroanal. Chem.*, 2017, 804, 29-35.
- 480. Q. H. Low, N. W. X. Loo, F. Calle-Vallejo and B. S. Yeo, Angew. Chem. Int. Ed., 2019,

58, 2256-2260.

- 481. L. Ji, L. Li, X. Ji, Y. Zhang, S. Mou, T. Wu, Q. Liu, B. Li, X. Zhu, Y. Luo, X. Shi, A. M. Asiri and X. Sun, Angew. Chem. Int. Ed., 2020, 59, 758-762.
- 482. S. Payra, S. Shenoy, C. Chakraborty, K. Tarafder and S. Roy, ACS Appl. Mater. Interfaces, 2020, 12, 19402-19414..
- 483. F. Jia, X. Yu and L. Zhang, J. Power Sources, 2014, 252, 85-89.
- 484. Y. Wu, Z. Jiang, X. Lu, Y. Liang and H. Wang, *Nature*, 2019, **575**, 639-642.
- 485. S. Mou, T. Wu, J. Xie, Y. Zhang, L. Ji, H. Huang, T. Wang, Y. Luo, X. Xiong, B. Tang and X. Sun, *Adv. Mater.*, 2019, **31**, 1903499.
- 486. F. Y. Zhang, T. Sheng, N. Tian, L. Liu, C. Xiao, B. A. Lu, B. B. Xu, Z. Y. Zhou and S. G. Sun, *Chem. Commun.*, 2017, **53**, 8085-8088.
- 487. H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu and C. He, J. Am. Chem. Soc., 2019, 141, 12717-12723.
- J. Yuan, J. J. Zhang, M. P. Yang, W. J. Meng, H. Wang and J. X. Lu, *Catalysts*, 2018, 8, 171.
- 489. Y. Song, W. Chen, C. Zhao, S. Li, W. Wei and Y. Sun, Angew. Chem. Int. Ed., 2017, 56, 10840-10844.
- 490. Y. Liu, Y. Zhang, K. Cheng, X. Quan, X. Fan, Y. Su, S. Chen, H. Zhao, Y. Zhang, H. Yu and M. R. Hoffmann, *Angew. Chem. Int. Ed.*, 2017, 56, 15607-15611.
- 491. K. Lv, Y. Fan, Y. Zhu, Y. Yuan, J. Wang, Y. Zhu and Q. Zhang, *J. Mater. Chem. A*, 2018, 6, 5025-5031.
- 492. S. Lee, G. Park and J. Lee, ACS Catal., 2017, 7, 8594-8604.
- 493. A. Dutta, I. Z. Montiel, R. Erni, K. Kiran, M. Rahaman, J. Drnec and P. Broekmann, *Nano Energy*, 2020, **68**, 104331.
- 494. Y. Hori, A. Murata, R. Takahashi and S. Suzuki, J. Chem. Soc., Chem. Commun., 1988, 1, 17-19.
- 495. C. Yang, H. Shen, A. Guan, J. Liu, T. Li, Y. Ji, A. M. Al-Enizi, L. Zhang, L. Qian and G. Zheng, *J. Colloid Interf. Sci.*, 2020, **570**, 375-381.
- 496. D. Ren, B. S.-H. Ang and B. S. Yeo, ACS Catal., 2016, 6, 8239-8247.
- 497. Y. C. Li, Z. Wang, T. Yuan, D.-H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G.

de Arguer, Y. Wang, C.-T. Dinh, O. Voznyy, D. Sinton and E. H. Sargent, *J. Am. Chem. Soc.*, 2019, **141**, 8584-8591.

- 498. M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent, *Nat. Commun.*, 2019, **10**, 5814.
- 499. H. Han, Y. Noh, Y. Kim, S. Park, W. Yoon, D. Jang, S. M. Choi and W. B. Kim, *Green Chem.*, 2020, 22, 71-84.
- Y. Zhang, K. Li, M. Chen, J. Wang, J. Liu and Y. Zhang, ACS Appl. Nano Mater., 2020, 3, 257-263.
- J. Yuan, M.-P. Yang, W.-Y. Zhi, H. Wang, H. Wang and J.-X. Lu, *J. CO2 Util.*, 2019, 33, 452-460.
- X. Wang, Z. Y. Wang, F. P. G. de Arquer, C. T. Dinh, A. Ozden, Y. G. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. T. Chen, M. F. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorovic, F. W. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. W. Lum, M. C. Luo, Y. M. Min, A. N. Xu, C. P. O'Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton and E. H. Sargent, *Nature Energy*, 2020, 5, 478-486.
- 503. H. Wang, Y.-K. Tzeng, Y. Ji, Y. Li, J. Li, X. Zheng, A. Yang, Y. Liu, Y. Gong, L. Cai, Y. Li, X. Zhang, W. Chen, B. Liu, H. Lu, N. A. Melosh, Z.-X. Shen, K. Chan, T. Tan, S. Chu and Y. Cui, *Nat. Nanotechnol.*, 2020, 15, 131-137.
- 504. A. R. Paris and A. B. Bocarsly, ACS Catal., 2017, 7, 6815-6820.
- 505. D. Ren, N. T. Wong, A. D. Handoko, Y. Huang and B. S. Yeo, *J. Phys. Chem. Lett.*, 2016, 7, 20-24.
- 506. D. F. Gao, F. Sohoken and B. Roldan Cuenya, ACS Catal., 2017, 7, 5112-5120.
- R. L. Cook, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc., 1987, 134, 1873-1874.
- R. L. Cook, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc., 1987, 134, 2375-2376.
- 509. Y. Hori, I. Takahashi, O. Koga and N. Hoshi, J. Phys. Chem. B, 2002, 106, 15-17.
- 510. Y. Hori, I. Takahashi, O. Koga and N. Hoshi, J. Molecular Catal. A-Chemical, 2003, 199,

39-47.

- 511. W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech, W. J. Durand, S. Dahl, J. K. Norskov and I. Chorkendorff, *Phys. Chem. Chem. Phys.*, 2012, 14, 76-81.
- 512. Y. Huang, A. D. Handoko, P. Hirunsit and B. S. Yeo, ACS Catal., 2017, 7, 1749-1756.
- 513. Y. Lum and J. W. Ager, Angew. Chem. Int. Ed., 2018, 130, 560-563.
- 514. A. S. Varela, W. Ju, T. Reier and P. Strasser, ACS Catal., 2016, 6, 2136-2144.
- 515. A. S. Varela, M. Kroschel, T. Reier and P. Strasser, Cataly. Today, 2016, 260, 8-13.
- 516. K. Ogura, H. Yano and F. Shirai, J. Electrochem. Soc., 2003, 150, 163-168.
- 517. T. Qin, Y. Qian, F. Zhang and B.-L. Lin, Chin. Chem. Lett., 2019, 30, 314-318.
- H. Yano, T. Tanaka, M. Nakayama and K. Ogura, *J. Electroanal. Chem.*, 2004, 565, 287-293.
- 519. M. S. Xie, B. Y. Xia, Y. W. Li, Y. Yan, Y. H. Yang, Q. Sun, S. H. Chan, A. Fisher and X. Wang, *Energy Environ. Sci.*, 2016, 9, 1687-1695.
- 520. D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave and V. Mougel, *Nat. Mater.*, 2019, **18**, 1222-1227.
- 521. Y. Gao, Q. Wu, X. Liang, Z. Wang, Z. Zheng, P. Wang, Y. Liu, Y. Dai, M. H. Whangbo and B. Huang, *Adv. Sci.*, 2020, 7, 1902820.
- 522. D. H. Nam, O. S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C. T. Dinh, F. P. Garcia de Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorovic, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M. J. Choi, S. W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi and E. H. Sargent, J. Am. Chem. Soc., 2018, 140, 11378-11386.
- 523. Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie,
 H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D.
 Sinton, G. Chen and E. H. Sargent, *Nat. Chem.*, 2018, 10, 974-980.
- 524. M. Esmaeilirad, A. Kondori, B. Song, A. R. Belmonte, J. Wei, K. Kucuk, S. M. Khanvilkar, E. Efimoff, W. Chen, C. U. Segre, R. Shahbazian-Yassar and M. Asadi, ACS Nano, 2020, 14, 2099-2108.
- 525. X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao, X. Han, W. Guo, S. Cui, H. Huang and J. Qiu, ACS Appl. Mater. Interfaces, 2019, 11, 9904-9910.
- 526. C. Chen, X. Sun, X. Yan, Y. Wu, M. Liu, S. Liu, Z. Zhao and B. Han, Green Chem., 2020,

22, 1572-1576.

- 527. J. Gao, H. Zhang, X. Guo, J. Luo, S. M. Zakeeruddin, D. Ren and M. Gratzel, J. Am. Chem. Soc., 2019, 141, 18704-18714.
- I. Merino-Garcia, J. Albo, J. Solla-Gullon, V. Montiel and A. Irabien, *J. CO2 Util..*, 2019, 31, 135-142.
- 529. C. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. Garcia de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton and E. H. Sargent, *Science*, 2018, 360, 783-787.
- 530. D. Kim, S. Lee, J. D. Ocon, B. Jeong, J. K. Lee and J. Lee, *Phys. Chem. Chem. Phys.*, 2015, **17**, 824-830.
- 531. Z. Xu, T. Wu, Y. Cao, X. Zeng, P. Lin and W.-W. Zhao, J. Catal., 2020, 383, 42-50.
- 532. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser and B. R. Cuenya, *Nat. Commun.*, 2016, 7, 12123.
- 533. R. Kas, R. Kortlever, A. Milbrat, M. T. Koper, G. Mul and J. Baltrusaitis, *Phys. Chem. Chem. Phys.*, 2014, **16**, 12194-12201.
- 534. P. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao and S. H. Yu, J. Am. Chem. Soc., 2020, 142, 6400-6408.
- 535. D. X. Tan, J. L. Zhang, L. Yao, X. N. Tan, X. Y. Cheng, Q. Wan, B. X. Han, L. R. Zheng and J. Zhang, *Nano Res.*, 2020, **13**, 768-774.
- 536. K. Manthiram, B. J. Beberwyck and A. P. Alivisatos, J. Am. Chem. Soc., 2014, 136, 13319-13325.
- 537. X. Wang, A. Xu, F. Li, S. F. Hung, D. H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton and E. H. Sargent, *J. Am. Chem. Soc.*, 2020, 142, 3525-3531.
- 538. A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H. Huang, J. W. Ager and R. Buonsanti, *Angew. Chem. Int. Ed.*, 2016, **55**, 5789-5792.
- 539. Y. Wang, H. Shen, K. J. T. Livi, D. Raciti, H. Zong, J. Gregg, M. Onadeko, Y. Wan, A. Watson and C. Wang, *Nano Lett.*, 2019, **19**, 8461-8468.

- 540. G. L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W. A. Smith and R. Buonsanti, ACS Catal., 2020, 10, 4854-4862.
- 541. D. Kim, C. S. Kley, Y. Li and P. Yang, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 10560-10565.
- 542. H. S. Jeon, S. Kunze, F. Scholten and B. Roldan Cuenya, ACS Catal., 2017, 8, 531-535.
- Y. Huo, X. Peng, X. Liu, H. Li and J. Luo, ACS Appl. Mater. Interfaces, 2018, 10, 12618-12625.
- 544. H. Ning, X. Wang, W. Wang, Q. Mao, Z. Yang, Q. Zhao, Y. Song and M. Wu, *Carbon*, 2019, 146, 218-223.
- 545. H. Ning, Q. Mao, W. Wang, Z. Yang, X. Wang, Q. Zhao, Y. Song and M. Wu, J. Alloys Compd., 2019, 785, 7-12.
- 546. W. Wang, H. Ning, Z. Yang, Z. Feng, J. Wang, X. Wang, Q. Mao, W. Wu, Q. Zhao, H. Hu, Y. Song and M. Wu, *Electrochim. Acta*, 2019, **306**, 360-365.
- 547. H. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2019, 141, 4624-4633.
- 548. A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang, T.-K. Sham, C. Yang, Y. Ji, L. Qian, X. Xu and G. Zheng, ACS Energy Lett., 2020, 5, 1044-1053..
- 549. Y.-L. Qiu, H.-X. Zhong, T.-T. Zhang, W.-B. Xu, X.-F. Li and H.-M. Zhang, ACS Catal., 2017, 7, 6302-6310.
- 550. Y. Lum, Y. Kwon, P. Lobaccaro, L. Chen, E. L. Clark, A. T. Bell and J. W. Ager, ACS Catal., 2015, 6, 202-209.
- 551. Z. Wang, G. Yang, Z. Zhang, M. Jin and Y. Yin, ACS Nano, 2016, 10, 4559-4564.
- A. Thevenon, A. Rosas-Hernandez, J. C. Peters and T. Agapie, *Angew. Chem. Int. Ed.*, 2019, 58, 16952-16958.
- 553. J. Xie, Y. Huang and H. Yu, Front. Environ. Sci. Eng., 2015, 9, 861-866.
- T. T. H. Hoang, S. Ma, J. I. Gold, P. J. A. Kenis and A. A. Gewirth, ACS Catal., 2017, 7, 3313-3321.
- 555. T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis and A. A. Gewirth, *J. Am. Chem. Soc.*, 2018, **140**, 5791-5797.
- 556. X. Chen, D. A. Henckel, U. O. Nwabara, Y. Li, A. I. Frenkel, T. T. Fister, P. J. A. Kenis

and A. A. Gewirth, ACS Catal., 2020, 10, 672-682.

- 557. J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang, H. Liu and X. Du, ACS Appl. Mater. Interfaces, 2019, 11, 2763-2767.
- S. Y. Lee, H. Jung, N. K. Kim, H. S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2018, 140, 8681-8689.
- 559. C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer, A. Rucki, M. Schuster and G. Schmid, *Adv. Energy Mater.*, 2017, 7, 1602114.
- 560. M. R. Goncalves, A. Gomes, J. Condeco, T. R. C. Fernandes, T. Pardal, C. A. C. Sequeira and J. B. Branco, *Electrochim. Acta*, 2013, **102**, 388-392.
- A. Dutta, M. Rahaman, N. C. Luedi, M. Mohos and P. Broekmann, ACS Catal., 2016, 6, 3804-3814.
- 562. K. D. Yang, W. R. Ko, J. H. Lee, S. J. Kim, H. Lee, M. H. Lee and K. T. Nam, *Angew. Chem. Int. Ed.*, 2017, **129**, 814-818.
- 563. F.-S. Ke, X.-C. Liu, J. Wu, P. P. Sharma, Z.-Y. Zhou, J. Qiao and X.-D. Zhou, *Catal. Today*, 2017, 288, 18-23.
- Y. Peng, T. Wu, L. Sun, J. M. V. Nsanzimana, A. C. Fisher and X. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 32782-32789.
- D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi and B. S. Yeo, *ACS Catal.*, 2015, 5, 2814-2821.
- 566. P. De Luna, R. Quintero-Bermudez, D. Cao-Thang, M. B. Ross, O. S. Bushuyev, P. Todorovic, T. Regier, S. O. Kelley, P. Yang and E. H. Sargent, *Nat. Catal.*, 2018, 1, 103-110.
- N. Martic, C. Reller, C. Macauley, M. Loeffler, B. Schmid, D. Reinisch, E. Volkova, A. Maltenberger, A. Rucki, K. J. J. Mayrhofer and G. Schmid, *Energy Environ Sci.*, 2020, 13, 2993-3006.
- 568. Z. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin,
 G. Lu, D. Su and S. Sun, *Nano Lett.*, 2019, 19, 8658-8663.
- M. Ebaid, K. Jiang, Z. Zhang, W. S. Drisdell, A. T. Bell and J. K. Cooper, *Chem. Mater.*, 2020, **32**, 3304-3311.
- 570. C. S. Chen, J. H. Wan and B. S. Yeo, J. Phys. Chem. C, 2015, 119, 26875-26882.

- 571. E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz and J. Flake, J. *Electrochem. Soc.*, 2013, 160, 841-846.
- 572. D. Wu, C. Dong, D. Wu, J. Fu, H. Liu, S. Hu, Z. Jiang, S. Z. Qiao and X.-W. Du, J. Mater. Chem. A, 2018, 6, 9373-9377.
- S. B. Varandili, J. Huang, E. Oveisi, G. L. De Gregorio, M. Mensi, M. Strach, J. Vavra, C. Gadiyar, A. Bhowmik and R. Buonsanti, *ACS Catal.*, 2019, 9, 5035-5046.
- 574. S. Chen, Y. Su, P. Deng, R. Qi, J. Zhu, J. Chen, Z. Wang, L. Zhou, X. Guo and B. Y. Xia, ACS Catal., 2020, 10, 4640-4646.
- 575. J. Wu, S. Ma, J. Sun, J. I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I. N. Odeh, R. Vajtai, A. Z. Yu, R. Luo, J. Lou, G. Ding, P. J. A. Kenis and P. M. Ajayan, *Nat. Commun.*, 2016, 7, 13869.
- X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu and B. Han, *Chem Sci*, 2016, 7, 2883-2887.
- 577. X. Liu, H. Yang, J. He, H. Liu, L. Song, L. Li and J. Luo, Small, 2018, 14, e1704049.
- 578. Z. Zhao, X. Peng, X. Liu, X. Sun, J. Shi, L. Han, G. Li and J. Luo, *J. Mater. Chem. A*, 2017, **5**, 20239-20243.
- 579. I. Takahashi, O. Koga, N. Hoshi and Y. Hori, J. Electroanal. Chem., 2002, 533, 135-143.
- 580. Y. Liu, S. Chen, X. Quan and H. Yu, J. Am. Chem. Soc., 2015, 137, 11631-11636.
- 581. X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 1944-1948.
- 582. C. Genovese, C. Ampelli, S. Perathoner and G. Centi, Green Chem., 2017, 19, 2406-2415.
- C. Genovese, M. E. Schuster, E. K. Gibson, D. Gianolio, V. Posligua, R. Grau-Crespo, G. Cibin, P. P. Wells, D. Garai, V. Solokha, S. Krick Calderon, J. J. Velasco-Velez, C. Ampelli, S. Perathoner, G. Held, G. Centi and R. Arrigo, *Nat. Commun.*, 2018, 9, 935.
- 584. B. Zha, C. Li and J. Li, J. Catal., 2020, 382, 69-76.
- 585. Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu and B. Han, *Nat. Commun.*, 2019, **10**, 3851.
- 586. Y. Oh, H. Vrubel, S. Guidoux and X. Hu, Chem. Commun., 2014, 50, 3878-3881.
- 587. A. R. Paris and A. B. Bocarsly, ACS Catal., 2019, 9, 2324-2333.