Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2021

Supplementary Materials

Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control

Linlin Yao,^a Wenting Zhu,^b Jianbo Shi,^{acde} Tailin Xu,^f Guangbo Qu,^{*acde} Wenhua Zhou,^{*b} Xue-Feng Yu,^b Xueji Zhang^f and Guibin Jiang^{acde}

- ^a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- ^b Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- ^c School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, P. R. China
- ^d Institue of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
- ^e University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- ^f School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China

EMAIL:

^a gbqu@rcees.ac.cn

^bwh.zhou@siat.ac.cn

Conflicts of interest

The authors declare they have no actual or potential competing financial interests.

Table of Contents

Table S1. Sampling, pretreatment and analysis methods of novel coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV) in different environmental matrices.

 Table S2.
 Techniques used for the detection of coronaviruses.

Table S1. Sampling, pretreatment and analysis methods of novel coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV) in different environmental matrices.

Sample Type	Virus	Sampling site	Sampling method	Pretreatment method	Practical performances	Reference
Inanimate surface	MERS-CoV	MERS designated hospitals South Korea	 Position: In MERS patients' wards Time: after disinfection Sampling: Dacron swab, pre-moistened with viral transport medium 	1. Clean-up: · Filtration (0.1-µm pore syringe filter) 2. RNA extraction	1. RT-PCR: • 42/68 positive 2. Cell culture (Vero E6): • 15/68 viability 3. EM: • Intact virions visible 4. Immunofluorescence assay(IFA): • Presence of MERS-CoV	1
Inanimate surface	MERS-CoV	MERS designated hospitals South Korea	 Position: In MERS patients' wards Sampling: Dacron swabs, pre-moistened with viral transport medium 	1. RNA extraction	1. RT-PCR: · 30/158 positive 2. Cell culture (Vero E6): · 6/158 viability	2
Inanimate surface	SARS-CoV-2	COVID-19 designated hospital Singapore	 Position: COVID-19 patients' wards Time: before the first cleaning cycle Sampling: Macrofoam swab, pre-moistened 	1. RNA extraction	1. RT-qPCR: · 17/30 room positive (Total of 245 samples collected from 30 wards)	3
Inanimate surface	SARS-CoV-2	COVID-19 designated hospitals USA	 Position: COVID-19 patients' wards and personal stuffs Sampling: 3 × 3 sterile gauze pads pre-wetted with PBS wiping in an "S" pattern in one or two directions. 	 Desorption: Manually shaking the conical for 1 min RNA extraction 	 RT-PCR: Personal items: 70.6% positive, 0.17-0.22 copies/µL Toilet surface: 81.0% positive, 0.25 copies/µL Room surface: 75.0% positive, 0.22 and 0.26 copies/µL Floor surface: 100% positive, 0.45 copies/µL Ventilation grate: 80% positive, 0.82 copies/µL Cell culture (Vero E6): TEM confirm the presence of intact virions in culture. 	4

Inanimate surface	SARS-CoV-2	COVID-19 designated hospital Singapore	 Position: Inside and outside the wards Time: Before and after daily disinfection Sampling: Sterile pre-moistened swabs 	1. RNA extraction	 RT-qPCR: After routine cleaning: all negative Before routine cleaning: 17/28 positive, 30.64-38.24 Ct 	5
Inanimate surface	SARS-CoV-2	COVID-19 dedicated hospital Wuhan, China	 Position: COVID-19 patients' wards and functional area Sampling: Pre-moistened swabs 	Not mention	 RT-qPCR: Intensive care unit: 43/161 positive General ward: 7/146 positive (More quantitative results showed in ref) 	6
Inanimate surface	SARS-CoV-2	1. COVID-19 designated hospital and rehabilitation center 2. Apartment houses the Republic of Korea	 Positon: Positon: Hospitals for COVID-19 patients (after disinfection) Rehabilitation center for COVID-19 patients (before disinfection) Apartment houses (before disinfection) Sampling: Sterile flexible swabs pre-moistened with viral transport medium Wiping within an area of 700 cm² (30 × 25 cm) 	1. RNA extraction	1. RT-qPCR: · 2/80 positive (COVID-19 patient's room before disinfection)	7
Inanimate surface	SARS-CoV-2	COVID-19 designated hospital Italy	 Position: Emergency unit and the sub-intensive care ward Sampling: Flexible nasopharyngeal nylon flocked swabs pre-moistened with universal transport medium 	Not mention	1. RT-qPCR: · 2/26 positive 2. Cell culture (Vero E6): · No viability confirmed	8
Inanimate surface	SARS-CoV-1	SARS designated hospitals Thailand and Taiwan	 Position: Wards and functional area Sampling: Sterile Dacron or cotton applicator pre- moistened with viral transport media Wiping within circular area ~5 cm in diameter 	1. RNA extraction	1. RT-qPCR: · 26/94 positive 2. Cell culture(Vero E6): · No viability confirmed	9
Inanimate surface	SARS-CoV-2	COVID-19 designated hospital Wuhan, China	 Position: Wards, functional room, and public area Time: After routine cleaning Sampling: Swabs pre-moistened with saline Wiping within <i>c</i>. 5 cm² 	Not mention	1. RT-PCR: · 2/90 positive (from the inside of a patient's mask)	10
Aerosol	MERS-CoV	MERS designated hospitals South Korea	 Position: MERS patients' wards Sampling: MD8 airscan sampling device Sterile gelatin filters (80 mm diameter/3µm pores) Airflow rate of 50 L/min, 20 min 	1. Desorption: • Dissolution of gelatin filter 2. Clean-up: • Filtration: 0.1-µm pore syringe filter 3. RNA extraction	1. RT-PCR: • 4/4 positive 2. Cell culture (Vero E6): • 4/4 viability 3. EM: • Intact virions visible 4. Immunofluorescence assay(IFA): • Presence of MERS-CoV	1

Aerosol	SARS-CoV-2	COVID-19 designated hospital Singapore	 Position: COVID-19 patients' wards Sampling: NIOSH Sampler 15 mL tube (>4μm particles), 1.5 mL tube (1-4μm), PTFE filter (<1μm particles, 37mm diameter, 3μm pores) Airflow rate of 3.5 L/min, 4h Filter cassette PTFE filter, 37mm diameter, 0.3μm pore size Airflow rate of 5 L/min, 4h 	1. RNA extraction	 1. RT-qPCR: (1) 4/10 positive (2) >4 μm: 927 and 2000 RNA copies/m³ air (3) 1-4 μm: 916 and 1384 RNA copies/m³ air (4) <1μm: None detected 	3
Aerosol	SARS-CoV-2	COVID-19 designated hospitals USA	 Position: COVID-19 patients' wards Hallway space Sampling: Sartorius Airport MD8 air sampler: Gelatin filter (80 mm) Airflow rate of 50 L/min, 15 min Personal Button Sampler: Gelatin filter (25 mm) Airflow rate of 4 L/min 	 Desorption: Dissolution of gelatin filter RNA extraction 	 RT-PCR: Wards: 63.2% positive, 2.42 copies/L air Hallway: 58.3% positive, 2.51 copies/L air Personal air sampler: 100% positive, 5.37- 67.16 copies/L air Cell culture (Vero E6): Immunofluorescent staining confirm the presence of viruses in culture. 	4
Aerosol	SARS-CoV-2	COVID-19 designated hospital Singapore	 Position: Inside and outside the wards Time: Before and after daily disinfection Sampling: Filter cassettes: PTFE filters (37mm,0.3µm) Airflow rate of 5 L/min, 4 hours Sartorius MD8 microbiological sampler: Gelatin membrane filter Airflow rate of 6 m³/h, 15 minutes 	1. RNA extraction	1. RT-qPCR: · All negative	5
Aerosol	SARS-CoV-2	COVID-19 dedicated hospital Wuhan, China	 Position: COVID-19 patients' wards and functional area Sampling: SASS 2300 Wetted Wall Cyclone Sampler Airflow rate of 300 L/min, 30min 	Not mention	 RT-qPCR: Intensive care unit: Patient's room: 8/18 positive, 1.4 copies/L Air outlet:5/14 positive, 3.8 copies/L Doctor's office: 1/8 positive, 0.52 copies/L (2) General ward: Patient's room: 2/16 positive, 0.68 copies/L 	6
Aerosol	SARS-CoV-2	1. COVID-19 designated hospitals 2. Public places Wuhan, China	 Position: In hospitals (patient area and functional area) In public area Sampling: (1) Styrene filter cassette sampler(collection of total suspended particles) Gelatin filter (25 mm diameter) Airflow rate of 5 L/min (2) Miniature cascade impactor(collection of aerodynamic size-segregated aerosols) 	1. Desorption: • Dissolution of gelatin filter (incubated at 37°C for 10 minutes by a block heater) 2. Inactivation: • Addition of 4:1 ratio of TRIzol LS Reagent 3. RNA extraction	1. ddPCR (1) Hospitals: • total suspended particles: 12/19 positive, 1- 21 copies/m ³ • aerodynamic size-segregated aerosols: 3/3 positive, 20-42 copies/m ³ • total aerosol deposition sample: 2/2 positive, 31 and 113 copies/m ³ (2) Public places: • total suspended particles: 4/11 positive:3-11	11

			Gelatin filter (25 mm and 37 mm diameter) Airflow rate of 9 L/min (3) Filter packed in holder (collection of aerosol deposition sample) Gelatin filer (80 mm diameter)		copies/m ³	
Aerosol	SARS-CoV-2	COVID-19 designated hospital Iran	 Position: COVID-19 patients' wards Sampling: Standard midget impinger Tube containing 20 mL of DMEM Airflow rate of 1.5 L·min⁻¹, 1 h 	1. Concentration: · ultracentrifugation 2. RNA extraction	1. RT-qPCR: · 0/10 positive	12
Aerosol	SARS-CoV-2	COVID-19 designated hospital Wuhan, China	 Position: Wards, functional room, and public area Time: After routine cleaning Sampling:	 Concentration: Immobilize and collect the magnetic beads from sampling buffer Resuspend the beads in 200μL phosphate buffered saline pH 7.0 in a 2 mL sterile tube. 	1. RT-PCR: · 0/135 positive	10
Aerosol	SARS-CoV-2	Clinic for evaluation of potential COVID-19 patients USA	 Position: In clinic Sampling: Viable virus aerosol sampler (VIVAS) 35 mm Petri dish with liquid collection media Airflow rate of 6.5 L/min, 1 h 	1. RNA extraction	1. RT-qPCR: • 1/2 positive, 0.87 genome equivalents/L 2. Cell culture (Vero E6): • No viability confirmed 3. Sanger sequencing	13
Aerosol (PM10)	SARS-CoV-2	Industrial area which is the epicenter of the Italian COVID-19 epidemic Bergamo, Italy	1. Position: • Ambient area 2. Sampling Low-volume gravimetric air sampler . Quartz fiber filters . Airflow rate of 38.3 L/min. 24 h	RNA extraction	1. RT-PCR: · 20/34 positive	14
Aerosol (PM2.5)	SARS-CoV-2	COVID-19 designated hospital Kuala Lumpur, Malaysia	 Position: Wards Sampling PM2.5 Sensor light scattering technique to measure PM2.5 Low Volume Sampler Glass microfiber filters (0.6 μm - 0.8 μm particles retention) 	 Desorption: Immersing filters in sterile RNase-free water and vortex Clean-up: Collecting supernatants after centrifugation RNA extraction 	1. RT-qPCR: · 2/4 positive, 74 ± 117.1 copies/μL, and 10 ± 7.44 copies/μL	15
Water	SARS-CoV-1	Sewage of two assigned hospitals receiving SARS patients. Beijing, China	 Samples: Sewage Sampling: Grab samples Before chlorine disinfection After chlorine disinfection 	 Neutralize the residual chlorine Adding 10 mL Na₂S₂O₃ (10% w/v) Concentration: Electropositive filter media particle 	 RT-PCR: All positive in sewage before disinfection Some positive in sewage after disinfection Cell culture (Vero E6): No viability confirmed Survivability of SARS-CoV-1 was tested through laboratory experiments. 	16

				3. RNA extraction		
Water	SARS-CoV-2	WWTPs and three receptor rivers, Milano Metropolitan Area, Italy	 Samples: Pre-treated wastewater Treated wastewater Treated wastewater Receptor rivers Sampling Grab samples Separate stainless steel buckets and transported in dark glass bottles 	 Clean-up Filtration of initial water samples through glass fiber filters (Whatman GF/F, 0.7 μm nominal pore size, 47mmdiameter) Filtration of prefiltered water through nitrocellulose Millipore MCE filters (0.22 μm nominal pore size, 47 mm diameter) 	1. RT-qPCR: (1) raw wastewater: 4/8 positive (2) treated wastewater: 0/4 positive (3) receptor rivers: 4/6 positive 2. Cell culture (Vero E6): • No viability confirmed 3. Whole genome sequencing	17
Water	SARS-CoV-2	Suburban pumping station and WWTPs, Southeast Queensland, Australia	 Sampling: Techniques (1) Conventional refrigerated autosampler (2) Submersible in-situ high frequency autosampler (3) Grab sampling technique 	Concentration: Method 1: Electronegative membrane (0.45-µm-pore- size, 90-mm-diameter) Method 2: Ultracentrifugation (centrifugal filter with a cut- off of 10 kDa)	1. RT-qPCR: · 2/9 positive, 1.9-12 copies/100 mL water 2. Sequencing: · Sanger and Illumina sequencing platform 3. Infection prevalence estimation	18
Water	SARS-CoV-2	Water Reclamation Facility Bozeman, USA	1. Samples: • Pre-treated wastewater 2. Sampling: (1) Grab samples (2) 24-h composite samples	 Clean-up Sequential filtration through 20 μM, 5 μM (Sartorius Biolab Products) and 0.45 μM (Pall Corporation) membrane filters Concentration Ultrafiltration (100 kDa molecular weight cut-off) RNA extraction 	1. RT-qPCR: · Quantitative results showed in ref 2. Sanger sequencing	19
Water	SARS-CoV-2	WWTPs, Israel Different districts, Tel Aviv metropolis.	 Samples: Sewage from districts Wastewater from WWTPs Effluent water from WWTPs Sampling: Automatic samplers 	 Clean-up Centrifugation Concentration PEG driven precipitation Ultrafiltration (molecular weight cutoff of 30 kDa) RNA Extraction 	1. RT-qPCR: · Quantitative results showed in ref	20
Water	SARS-CoV-2	WWTPs Valencia, Spain	 Samples: Pre-treated wastewater Treated wastewater 	1. Concentration: · aluminum driven precipitation	1. RT-qPCR: · Quantitative results showed in tables	21

				2. RNA Extraction		
Water	SARS-CoV-2	WWTPs, Milan and Rome, Italy	 Samples: Influent wastewater Sampling: 24-h composite samples 	1. Inactivation · 30 min treatment at 56 °C 2. Concentration · PEG driven precipitation 3. RNA Extraction	1. Semi-nested RT-PCR and RT-qPCR: · 6/12 positive	22
Water	SARS-CoV-2	WWTPs Netherlands	 Samples: Pre-treated wastewater Sampling: A Composite sewage samples Autosampler Four sampling time points: 3 Weeks before and 1, 2.5, and 4 Weeks after the First COVID- 19 Case Was Reported. 	 Clean-up Centrifugation Concentration Ultrafiltration (centrifugal ultrafilters with a cut-off of 100 kDa) RNA Extraction 	 RT-qPCR: (1) samples collected before COVID-19 reported: 0/6 positive (2) samples collected at 1 week after COVID- 19 reported: 4/7 positive (3) samples collected at 2.5 and 4 week after COVID-19 reported: 17/17 positive (Quantitative results showed in ref) 	23
Water	SARS-CoV-2	WWTPs Paris	 Samples: Pre-treated wastewater Treated wastewater 	Concentration: · ultracentrifugation	 RT-qPCR: Pre-treated wastewater:23/23 positive Treated wastewater: 6/8 positive 	24
Water	SARS-CoV-2	WWTPs Murcia (low COVID-19 prevelance area), Spain	 Samples: influent wastewater secondary treated effluent water tertiary treated effluent water Sampling: Grab samples 	1. Concentration · Aluminum driven precipitation 2. RNA Extraction	 RT-qPCR: Influent 35/42 positive, 5.4 ± 0.2 log10 genomic copies/L Secondary treated effluent water: 2/18 positive, 5.4 log10 genomic copies/L Tertiary treated effluent water: 0/12 positive 	25
Water	SARS-CoV-2	WWTPs Barcelona, Spain	1. Samples: Pre-treated wastewater 2. Sampling: 24-h composite sample	1. Concentration · PEG 6000 driven precipitation 2. RNA extraction	 1. RT-qPCR: The archival samples pre-collected before the pandemic were also analyzed Quantitative results showed in ref 	26
Water	SARS-CoV-2	(1) WWTPs(2) Manholes nearby the pandemic hospitals Istanbul, Turkey	 Samples: Pre-treated wastewater Sampling: (1) 24-h composite pre-treated wastewater samples from WWTPs (2) Grab samples from manholes 	Method 1: (1) Clean-up: centrifugation (2) Concentration: ultrafiltration (10kDa cutoff) (3) RNA extraction Method 2: (1) Clean-up: centrifugation (2) Concentration: PEG 8000 driven precipitation (3) RNA extraction	 RT-qPCR: Pre-treated wastewater from WWTPs: 5/7 positive, 2.89E3 and 1.80E4 copies/L Wastewater from manholes: 2/2 positive, 4.49E4 and 9.33E4 copies/L 	27
Water	SARS-CoV-2	WWTPs, Massachusetts, USA	 Samples: Pre-treated wastewater Sampling: 24-h composite samples 	 Inactivation 60°C for 90 min Clean-up Filtration (0.2 μm membrane) 	1. RT-qPCR · Quantitative results showed in ref 2. Sanger sequencing	28

				3. Concentration · PEG 8000 driven precipitation		
Water	SARS-CoV-1	Sewage of two assigned hospitals receiving SARS patients Beijing, China	 Samples: Sewage Sampling: Grab samples Before chlorine disinfection After chlorine disinfection 	 Neutralize the residual chlorine Adding 10 mL Na2S2O3 (10% w/v) Concentration (1) Electropositive filter media particle (2) PEG driven precipitation RNA extraction 	 Semi-nested RT-PCR: All positive in sewage before disinfection Some positive in sewage after disinfection Cell culture (Vero E6): No viability confirmed 	29
Water	SARS-CoV-2	 1. WWTPs 2. Influent pump stations 3. Interceptor lines Syracuse, and Onondaga County, NY 	 Samples: Pre-treated wastewater Sampling: 24-h composite samples 	1. Concentration: · Ultracentrifugation 2. RNA extraction	1. RT-qPCR: · Quantitative results showed in ref	30
Water	SARS-CoV-2	 COVID-19 designated hospitals' wards WWTPs of COVID- 19 designated hospitals Pipeline in Seafood market Pipeline around seafood market Wuhan, China 	 Samples: Pre-treated wastewater Disinfected water Pipewater 	For PCR analysis 1. Clean-up: • Centrifugation 2. Concentration: • PEG 6000 driven precipitation 3. RNA extraction 4. For SERS analysis: no pretreatment	 RT-qPCR and SERS: Pre-treated wastewater: 4/8 positive (RT-qPCR), 6/8 positive (SERS) Disinfected water: 0/3 positive Pipewater: 1/6 positive 	31
Water	SARS-CoV-2	WWTPs Federal State of North Rhine-Westphalia, Germany	 Samples: Pre-treated sewage Treated sewage Sampling: Autosampler 24-h composite samples 	 Clean-up: Centrifugation Concentration: Ultrafiltration (10kDa cutoff) RNA extraction 	1. RT-qPCR: (1) Pre-treated wastewater: 1.8 copies/mL(aqueous) and 25 copies/ mL(solid) (2) Treated wastewater: 8.8 copies/mL (aqueous) and 13 copies/mL(solid) (More quantitative results showed in ref) 2. Cell culture (Caco-2 cells): No viability confirmed 3. Sanger sequencing	32
Sludge	SARS-CoV-2	WWTPs Istanbul, Turkey.	 Samples: Primary sludge Waste activated sludge Sampling: Grab samples 	 Desorption: Shaking to desorb virus in solid particles into aqueous phase. Clean-up 	1. RT-qPCR · 9/9 positive, 1.17E4 - 4.02E4 copies/L	33

			· Collecting before the sludge were dewatered (Sludge samples contain 98-99 % water)	 Centrifugation and filtration (0.45 µm and 0.2 µm pores) Concentration PEG 8000 driven precipitation RNA Extraction 		
Sludge	SARS-CoV-2	Wastewater treatment Facility New Haven, USA	 Samples: Primary sewage sludge Sampling: Grab samples : Collecting at the outlet of a gravity thickener (Solids content ranging from 2.6% to 5%) 	RNA Extraction	1. RT-qPCR: · All positive, 1.7E3 - 4.6E5 copies/mL	34

NIOSH: the National Institute for Occupational Safety and Health, VIVAS: viable virus aerosol sampler, PTFE: polytetrafluoroethylene, WWTP: wastewater treatment plant, PEG: polyethylene glycol, PBS: phosphate buffer saline, DMEM: Dulbecco's modified eagle medium, EM: electron microscopy RT-PCR: reverse transcription-polymerase chain reaction, RT-qPCR: RT-quantitative real-time PCR, ddPCR: droplet digital PCR, SERS: surface enhanced Raman scattering.

Table S2. Techniques used for the detection of coronaviruses.

Method	Detection Principle	Key Feature	Sample	Sensitivity	throughput	Time to result	Reference		
Nucleic acid-based analysis									
		Direct hybridiz	ation						
Dot-blot, or southern blotting and northern blotting	Direct puelois coide	Low sensitivity and demanding operation	Synthetic nucleic acids	1-10 pg/reaction	Several samples	Several hours to days	35		
Dual-functional plasmonic biosensor	hybridization without	Easy, quick and high sensitivity, but need	Synthetic SRAS-	0.22 pM/reaction	One sample	Several minutes to hours	36		
Colorimetric assay based on gold nanoparticles (AuNPs)		detection	CoV-2 RNA	0.18 ng/µL of RNA	One sample	10 min	37		
Gene Microarray	Binding assays against hundreds of DNA	High throughput, accuracy and multitarget detection	Clinical samples (blood, sputum, plasma)	1-10 copies/reaction	Hundreds of samples	Several hours	38		
		PCR-based amplification	before detection						
PCR-based	Nucleic acids amplification under thermal cycling	High sensitivity, requiring well-trained technician and lacking of quantitative and real-time results	SARS clinical samples (sputum, pharyngeal swab)	1-10 copies/reaction	Several samples	1-5 days	39		
RT-qPCR	Nucleic acids amplification process in "real-time" under thermal cycling quantitatively	High sensitivity, offering real-time results, requiring expensive facilities and well- trained technician	SARS and SRAS- CoV-2 Clinical samples (sputum, pharyngeal swab)	1-10 copies/reaction	96 samples	3-4 hours	40		
ddPCR	Nucleic acids amplification process in "real-time" under thermal cycling with absolute quantification	High sensitivity and immune to background, but dependent on thermal cycling	Mostly synthetic nucleic acids	1-10 copies/reaction	96 samples	Several hours	41		
		Traditional Isothermal am	plification-based						
RCA NASBA LAMP RPA	Nucleic acids amplification under constant temperature	High sensitivity, amplification at a single temperature and no need for expensive instruments, but need further optimization for clinical sample detection	Synthetic nucleic acids	10 copies/µL	Several samples	Several hours	42 43 44 45		
		CRISPR-based Isothermal a	mplification-based						
SHERLOCK DETECTR	Collateral activity of CRISPR protein	High sensitivity and specificity, low expense, no need for thermal cycling and	Synthetic SARS- CoV-2 RNA	10 copies/μL 10 copies/μL	One sample	One to several hours	46 47		

HOLMES		expensive equipment, but need further		Attomolar			48
CRISPR-Chip	Specifically, binding and cleaving dsDNA of Cas9	optimization for clinical sample detection	Synthetic nucleic	1.7 fM			49
CRISDA	Cas9 mediated isothermal amplification		acids	Attomolar			50
		Next generation se	equencing				
NGS (nanopore sequencing, Helicos sequencing and real-time single-molecule sequencing with polymerase)	de novo sequencing of a whole genome	NGS can provide a variety of fundamental information regarding viral nucleic acid sequences such as the origin, revolution, mutations, etc. but high expense of equipment and regents, requiring tedious sample preparation and lengthy turnaround time	Clinical samples (sputum, pharyngeal swab)	1-10 copies/reaction	NA	Several days	51
		Protein-based a	analysis				
		Antigen or Antibody I	mmunoassay				
RIA	Antigens binding to	A highly sensitive method but the main drawback is the handling and disposal of hazardous radioactive substances	Recombinant proteins	10 pg/mL to 10	96 samples	Ne och 45 min	52
EIA (ELISA, FPIA, MEIA, CLIA)	antibodies with high	Inapplicable to early-stage detection, but	Clinical samples	ng/mL	96 samples	Nearly 15 min	53
LFA	opcomoty and animity	timeless, easy and quick operation	(blood, sputum or plasma)		One sample		54
		Mass spectro	metry				
MALDI-TOF MS	Mass spectrometry technology combined with machine learning algorithms as an alternative fast tool for SARS-CoV-2 detection	A high-throughput and high-content analysis strategy aiming at the any biomolecules in a sample	nasopharyngeal swabs samples	NR	Hundreds of samples	NR	55
		Virion detec	tion				
EM				10 ⁵ to10 ⁶ virus			56
IEM	Observing virus particles	Demanding sample preparation and high	SARS and SRAS- CoV-2 infected cells	10 ³ to10 ⁴ virus particles per mL	One sample	Several hours	56
Cyro-EM	airectly	cost, but meaningful in virology research	or tissues	NR			57
AFM				NR			58

COVID-19 FET sensor	Detecting the change of electrical response signal derived by the conjunction of antibody and target SARS-CoV-2 spike protein	A highly sensitive and requiring no sample pretreatment or labeling	Nasopharyngeal swabs	242 copies/mL	One sample	Minutes	59
QCM	The mass variation on the quartz crystal sensor will induce the change of frequency of oscillation	The label-free and real-time detection with sensitivity up to ng level	Oral swab samples	NR	One sample	Minutes	60
Flow cytometry technique	Identify and analyze virion based on fluorescence signal and particle size	Careful and technical preparation process including fixing and labeling of virus particles, which may bring barrier to the onsite detection	NR	NR	85-90 samples	180 min	61
		Viability and infectivi	ty evaluation				
Cell culture	Virus growth in cultured cells	Some viruses hard or impossible to cultivate, time-consuming, technically very demanding and required well- controlled laboratory environment, but meaningful in virology research	Isolated from SRAS-CoV-2 clinical samples such as respiratory and stool samples	NR	Several samples	Several days	1, 16, 62
		Integrated Me	thods				
Microfluidics (a portable microfluidic immunoassay system)	Combining advanced biomarker detection methods with microfluidics (able to precisely manipulate and control the movements of tiny volume of fluids)	High sensitivity and specifically for easy- to-use, sensitive, rapid, multiple, and onsite detection of IgG/IgM/antigen of SARS-CoV-2 simultaneously	Clinical human serum and pharyngeal swabs	NR	One sample	15 min	63
Lab-on-a-chip (SPR-based biosensor)	The diagnosis of SARS using SCVme anchored onto a gold substrate	Integrated system without the need for any external equipment or human intervention	The fusion proteins	906 RU for anti- SCVme	One sample	10 min	64
PCR: polymerase chain reaction, RT-qPCR: reverse transcription quantitative real-time PCR, ddPCR: digital droplet PCR, RCA: Rolling-circle amplification, NASBA: nucleic acid sequence-based amplification, LAMP: loop-mediated isothermal amplification, RPA: recombinase Polymerase Amplification, SHERLOCK: specific high-sensitivity enzymatic reporter unlocking, DETECR: DNA Endonuclease-Targeted CRISPR Trans Reporter, HOLMES: One-Hour-Low cost Multipurpose highly Efficient System, CRISDA: CRISPR–Cas9-triggered nicking endonuclease-mediated Strand Displacement Amplification method, NGS: next-generation sequencing, RIA: radioimmunoassay, EIA: enzyme immunoassay, ELISA: enzyme linked immunosorbent assay, FPIA: fluorescence polarization immunoassay, MEIA: micropartical enzyme immunoassay, CLIA: chemiluminescent immunoassay, LFA: lateral flow assay, MALDI-TOF MS: matrix-assisted laser desorption/ionization-time of flight mass spectrometry, EM: Electron Microscopy, IEM: Immune electron microscopy, Cyro-EM: Cryo-electron microscopy, AFM: Atomic force microscopy, COVID-19 FET sensor, QCM: quartz crystal microbalance, SPR-based biosensor: surface plasmon resonance-based biosensor, SCVme: SARS coronaviral surface antigen, NR: not report.							

References

- 1. S. H. Kim, S. Y. Chang, M. Sung, J. H. Park, H. Bin Kim, H. Lee, J. P. Choi, W. S. Choi and J. Y. Min, *Clin. Infect. Dis.*, 2016, **63**, 363-369.
- 2. S. Y. Bin, J. Y. Heo, M. S. Song, J. Lee, E. H. Kim, S. J. Park, H. I. Kwon, S. M. Kim, Y. I. Kim, Y. J. Si, I. W. Lee, Y. H. Baek, W. S. Choi, J. Min, H. W. Jeong and Y. K. Choi, *Clin. Infect. Dis.*, 2016, **62**, 755-760.
- P. Y. Chia, K. K. Coleman, Y. K. Tan, S. W. X. Ong, M. Gum, S. K. Lau, X. F. Lim, A. S. Lim, S. Sutjipto, P. H. Lee, T. T. Son, B. E. Young, D. K. Milton, G. C. Gray, S. Schuster, T. Barkham, P. P. De, S. Vasoo, M. Chan, B. S. P. Ang, B. H. Tan, Y. S. Leo, O. T. Ng, M. S. Y. Wong, K. Marimuthu and T. Singapore Novel Coronavirus Outbreak Research, *Nat. Commun.*, 2020, **11**, 2800.
- 4. J. L. Santarpia, D. N. Rivera, V. L. Herrera, M. J. Morwitzer, H. M. Creager, G. W. Santarpia, K. K. Crown, D. M. Brett-Major, E. R. Schnaubelt, M. J. Broadhurst, J. V. Lawler, S. P. Reid and J. J. Lowe, *Sci. Rep.*, 2020, **10**, 12732.
- 5. S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong and K. Marimuthu, JAMA, 2020, 323, 1610-1612.
- 6. Z. D. Guo, Z. Y. Wang, S. F. Zhang, X. Li, L. Li, C. Li, Y. Cui, R. B. Fu, Y. Z. Dong, X. Y. Chi, M. Y. Zhang, K. Liu, C. Cao, B. Liu, K. Zhang, Y. W. Gao, B. Lu and W. Chen, *Emerg. Infect. Dis.*, 2020, **26**, 1583-1591.
- 7. S. E. Lee, D. Y. Lee, W. G. Lee, B. Kang, Y. S. Jang, B. Ryu, S. Lee, H. Bahk and E. Lee, Osong Public Health Res. Perspect., 2020, **11**, 128-132.
- 8. M. Colaneri, E. Seminari, S. Novati, E. Asperges, S. Biscarini, A. Piralla, E. Percivalle, I. Cassaniti, F. Baldanti, R. Bruno, M. U. Mondelli and C. I. S. M. P. T. Force, *Clin. Microbiol. Infect.*, 2020, **26**, e1-e5.
- 9. S. F. Dowell, J. M. Simmerman, D. D. Erdman, J. S. J. Wu, A. Chaovavanich, M. Javadi, J. Y. Yang, L. J. Anderson, S. X. Tong and M. S. Ho, *Clin. Infect. Dis.*, 2004, **39**, 652-657.
- 10. Y. H. Li, Y. Z. Fan, L. Jiang and H. B. Wang, *Epidemiol. Infect.*, 2020, **148**, e154.
- 11. Y. Liu, Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, X. Liu, K. Xu, K. F. Ho, H. Kan, Q. Fu and K. Lan, *Nature*, 2020, **582**, 557-560.
- 12. S. Faridi, S. Niazi, K. Sadeghi, K. Naddafi, J. Yavarian, M. Shamsipour, N. Z. S. Jandaghi, K. Sadeghniiat, R. Nabizadeh, M. Yunesian, F. Momeniha, A. Mokamel, M. S. Hassanvand and T. MokhtariAzad, *Sci. Total Environ.*, 2020, **725**, 5.
- 13. J. A. Lednicky, S. N. Shankar, M. A. Elbadry, J. C. Gibson, M. M. Alam, C. J. Stephenson, A. Eiguren Fernandez, J. G. Morris, C. N. Mavian, M. Salemi, J. R. Clugston and C. Y. Wu, *Aerosol Air Qual. Res.*, 2020, **20**, 1167-1171.
- 14. L. Setti, F. Passarini, G. De Gennaro, P. Barbieri, M. G. Perrone, M. Borelli, J. Palmisani, A. Di Gilio, V. Torboli, F. Fontana, L. Clemente, A. Pallavicini, M. Ruscio, P. Piscitelli and A. Miani, *Environ. Res.*, 2020, **188**, 109754.

- 15. N. S. Md, Y. C. Wai, N. Ibrahim, Z. Z. Rashid, N. Mustafa, H. H. A. Hamid, M. T. Latif, S. P. Er, L. C. Yik, K. M. Alhasa, J. H. Hashim and m. s. m. nadzir, *Research Square*, 2020, DOI: 10.21203/rs.3.rs-33354/v1.
- 16. X. W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. Zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao and J. Li, *Water Sci. Technol.*, 2005, **52**, 213-221.
- 17. S. G. Rimoldi, F. Stefani, A. Gigantiello, S. Polesello, F. Comandatore, D. Mileto, M. Maresca, C. Longobardi, A. Mancon, F. Romeri, C. Pagani, F. Cappelli, C. Roscioli, L. Moja, M. R. Gismondo and F. Salerno, *Sci. Total Environ.*, 2020, **744**, 140911.
- 18. W. Ahmed, N. Angel, J. Edson, K. Bibby, A. Bivins, J. W. O'Brien, P. M. Choi, M. Kitajima, S. L. Simpson, J. Li, B. Tscharke, R. Verhagen, W. J. M. Smith, J. Zaugg, L. Dierens, P. Hugenholtz, K. V. Thomas and J. F. Mueller, *Sci. Total Environ.*, 2020, **728**, 138764.
- 19. A. Nemudryi, A. Nemudraia, T. Wiegand, K. Surya, M. Buyukyoruk, K. K. Vanderwood, R. Wilkinson and B. Wiedenheft, *medRxiv*, 2020, DOI: 10.1101/2020.04.15.20066746.
- I. Bar-Or, K. Yaniv, M. Shagan, E. Ozer, O. Erster, E. Mendelson, B. Mannasse, R. Shirazi, E. Kramarsky-Winter, O. Nir, H. Abu-Ali, Z. Ronen, E. Rinott, Y. E. Lewis, E. F. Friedler, Y. Paitan, E. Bitkover, Y. Berchenko and A. Kushmaro, *medRxiv*, 2020, DOI: 10.1101/2020.04.26.20073569.
- 21. W. Randazzo, E. Cuevas-Ferrando, R. Sanjuan, P. Domingo-Calap and G. Sanchez, Int. J. Hyg. Environ. Health, 2020, 230, 113621.
- 22. G. La Rosa, M. Iaconelli, P. Mancini, G. Bonanno Ferraro, C. Veneri, L. Bonadonna, L. Lucentini and E. Suffredini, *Sci. Total Environ*, 2020, **736**, 139652.
- 23. G. Medema, L. Heijnen, G. Elsinga, R. Italiaander and A. Brouwer, *Environ. Sci. Tech. Let.*, 2020, 7, 511-516.
- 24. S. Wurtzer, V. Marechal, J. M. Mouchel, Y. Maday, R. Teyssou, E. Richard, J. L. Almayrac and L. Moulin, *medRxiv*, 2020, DOI: 10.1101/2020.04.12.20062679.
- 25. W. Randazzo, P. Truchado, E. Cuevas-Ferrando, P. Simon, A. Allende and G. Sanchez, *Water Res.*, 2020, **181**, 115942.
- 26. G. Chavarria-Miró, E. Anfruns Estrada, S. Guix, M. Paraira, B. Galofre, G. Saanchez, R. Pinto and A. Bosch, *medRxiv*, 2020, DOI: 10.1101/2020.06.13.20129627.
- 27. B. A. Kocamemi, H. Kurt, S. Hacioglu, C. Yarali, A. M. Saatci and B. Pakdemirli, *medRxiv*, 2020, DOI: 10.1101/2020.05.03.20089417.
- 28. F. Wu, J. Zhang, A. Xiao, X. Gu, W. L. Lee, K. Kauffman, W. Hanage, M. Matus, N. Ghaeli, N. Endo, C. Duvallet, K. Moniz, T. Erickson, P. Chai, J. Thompson and E. Alm, *mSystems*, 2020, **5**, e00614-20.
- X. W. Wang, J. S. Li, T. K. Guo, B. Zhen, Q. X. Kong, B. Yi, Z. Li, N. Song, M. Jin, X. M. Wu, W. J. Xiao, X. M. Zhu, C. Q. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. F. Li, G. R. Ou, M. N. Wang, T. Y. Fang, G. J. Wang, Y. H. Qiu, H.-H. Wu, F. H. Chao and J. W. Li, *World J. Gastroenterol.*, 2005, **11**, 4390-4395.

- 30. H. Green, M. Wilder, F. A. Middleton, M. Collins, A. Fenty, K. Gentile, B. Kmush, T. Zeng and D. A. Larsen, *medRxiv*, 2020, DOI: 10.1101/2020.05.21.20109181.
- 31. D. Zhang, X. Zhang, R. Ma, S. Deng, X. Wang, X. Zhang, X. Huang, Y. Liu, G. Li, J. Qu, Y. Zhu and J. Li, *medRxiv*, 2020, DOI: 10.1101/2020.05.02.20086876.
- 32. S. Westhaus, F. A. Weber, S. Schiwy, V. Linnemann, M. Brinkmann, M. Widera, C. Greve, A. Janke, H. Hollert, T. Wintgens and S. Ciesek, *Sci. Total Environ.*, 2020, **751**, 141750.
- 33. B. A. Kocamemi, H. Kurt, A. Sait, F. Sarac, A. M. Saatci and B. Pakdemirli, *medRxiv*, 2020, DOI: 10.1101/2020.05.12.20099358.
- 34. J. Peccia, A. Zulli, D. E. Brackney, N. D. Grubaugh, E. H. Kaplan, A. Casanovas-Massana, A. I. Ko, A. A. Malik, D. Wang, M. Wang, J. L. Warren, D. M. Weinberger and S. B. Omer, *medRxiv*, 2020, DOI: 10.1101/2020.05.19.20105999.
- 35. J. Kulski and M. Norval, J. Arch. of virol., 1985, 83, 3-15.
- 36. G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick and J. Wang, ACS Nano, 2020, 14, 5268-5277.
- 37. P. Moitra, M. Alafeef, K. Dighe, M. B. Frieman and D. Pan, ACS Nano, 2020, 14, 7617-7627.
- 38. X. Guo, P. Geng, Q. Wang, B. Cao and B. Liu, J. Microbiol. Biotechnol., 2014, 24, 1445-1454.
- 39. D. Adachi, G. Johnson, R. Draker, M. Ayers, T. Mazzulli, P. Talbot and R. Tellier, J. Viro. Meth., 2004, **122**, 29-36.
- 40. S. P. Yip, S. S. T. To, P. H. M. Leung, T. S. Cheung, P. K. C. Cheng and W. W. L. Lim, *Clin. Chem.*, 2005, **51**, 1885-1888.
- 41. T. Suo, X. Liu, J. Feng, M. Guo, W. Hu, D. Guo, H. Ullah, Y. Yang, Q. Zhang, X. Wang, M. Sajid, Z. Huang, L. Deng, T. Chen, F. Liu, K. Xu, Y. Liu, Q. Zhang, Y. Liu, Y. Xiong, G. Chen, K. Lan and Y. Chen, *Emerg. Microbes. Infect.*, 2020, **9**, 1259-1268.
- 42. B. Wang, S. J. Potter, Y. G. Lin, A. L. Cunningham, D. E. Dwyer, Y. L. Su, X. J. Ma, Y. D. Hou and N. K. Saksena, *J. Clin. Microbiol.*, 2005, **43**, 2339-2344.
- 43. Q. Wu, C. Suo, T. Brown, T. Wang, S. A. Teichmann and A. R. Bassett, *bioRxiv*, 2020, DOI: 10.1101/2020.06.01.127019.
- 44. G. S. Park, K. Ku, S. H. Baek, S. J. Kim, S. Kim, B. T. Kim and J. S. Maeng, J. Mol. Diagn., 2020, 22.
- 45. A. Abd El Wahed, P. Patel, D. Heidenreich, F. T. Hufert and M. Weidmann, *PLoS Currents*, 2013, 5.
- 46. F. Zhang, O. O. Abudayyeh and J. S. Gootenberg, *A protocol for detection of COVID-19 using CRISPR diagnostics*. 2020.
- 47. J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen and C. Y. Chiu, *Nat. Biotechnol.*, 2020, **38**, 870-874.
- 48. S. Y. Li, Q. X. Cheng, J. M. Wang, X. Y. Li, Z. L. Zhang, S. Gao, R.-B. Cao, G. P. Zhao and J. Wang, J. Cell disc., 2018, 4, 1-4.

- 49. R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne, M. Sandhu, N. A. Wauford, J. Y. Chung, J. Nokes, M. Athaiya, J. Paredes, R. Peytavi, B. Goldsmith, N. Murthy, I. M. Conboy and K. Aran, *Nat. Biomed. Eng.*, 2019, **3**, 427-437.
- 50. W. Zhou, L. Hu, L. Ying, Z. Zhao, P. K. Chu and X. F. Yu, *Nat. Commun.*, 2018, **9**, 5012.
- 51. M. W. Anderson, in *Genomic Applications in Pathology*, Springer, 2019, pp. 23-31.
- 52. J. R. Stephenson, R. E. Wilsnack and S. A. Aaronson, *J. Virol.*, 1973, **11**, 893-899.
- 53. W. Liu, L. Liu, G. Kou, Y. Zheng, Y. Ding, W. Ni, Q. Wang, L. Tan, W. Wu and S. Tang, *J. of clin. microbiol.*, 2020, **58**, e00461-20.
- 54. B. D. Grant, C. E. Anderson, J. R. Williford, L. F. Alonzo, V. A. Glukhova, D. S. Boyle, B. H. Weigl and K. P. Nichols, *J. Anal. Chem.*, 2020, **92**, 11305-11309.
- 55. M. F. Rocca, J. C. Zintgraff, M. E. Dattero, L. S. Santos, M. Ledesma, C. Vay, M. Prieto, E. Benedetti, M. Avaro, M. Russo, F. M. Nachtigall and E. Baumeister, *J. Virol. Methods*, 2020, **286**, 113991.
- 56. C. S. Goldsmith, K. M. Tatti, T. G. Ksiazek, P. E. Rollin, J. A. Comer, W. W. Lee, P. A. Rota, B. Bankamp, W. J. Bellini and S. R. Zaki, *Emerg. Infect. Dis.*, 2004, **10**, 320-326.
- 57. A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire and D. Veesler, *Cell*, 2020, **180**, 1-12.
- 58. S. Lin, C. K. Lee, S. Y. Lee, C. L. Kao, C. W. Lin, A. B. Wang, S. M. Hsu and L. S. Huang, *Cell Microbiol.*, 2005, 7, 1763-1770.
- 59. G. Seo, G. Lee, M. J. Kim, S. H. Baek, M. Choi, K. B. Ku, C. S. Lee, S. Jun, D. Park, H. G. Kim, S. J. Kim, J. O. Lee, B. T. Kim, E. C. Park and S. I. Kim, ACS Nano, 2020, 14, 5135-5142.
- 60. L. M. Pandey, *Expert Rev. Proteomics*, 2020, **17**, 425-432.
- 61. F. Shen, M. Tan, Z. Wang, M. Yao, Z. Xu, Y. Wu, J. Wang, X. Guo and T. Zhu, *Environ. Sci. Technol.*, 2011, **45**, 7473-7480.
- 62. S. F. Dowell, J. M. Simmerman, D. D. Erdman, J. S. Wu, A. Chaovavanich, M. Javadi, J. Y. Yang, L. J. Anderson, S. Tong and M. S. Ho, *Clin. Infect. Dis.*, 2004, **39**, 652-657.
- 63. Q. Lin, D. Wen, J. Wu, L. Liu, W. Wu, X. Fang and J. Kong, *Anal. Chem.*, 2020, **92**, 9454-9458.
- 64. T. J. Park, M. S. Hyun, H. J. Lee, S. Y. Lee and S. Ko, *Talanta*, 2009, **79**, 295-301.