Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2021

Silver Nanomaterials: Synthesis and (Electro/Photo) Catalytic Applications

Rakesh Kumar Sharma, *^a Sneha Yadav, ^a Sriparna Dutta, ^a Hanumant B. Kale, ^b Indrajeet <u>R.</u> Warkad, ^b Radek Zbořil,^{c,d} Rajender S. Varma*^{c,e} and Manoj B. Gawande_^{e,b}*

^aGreen Chemistry Network Centre, University of Delhi, New Delhi-110007, India. Tel: 91-11-27666250; E-mail: <u>rksharmagreenchem@hotmail.com</u>

^bDepartment of <u>Industrial and Engineering</u> Chemistry-<u>and Engineering</u>, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India. Email: <u>mb.gawande@marj.ictmumbai.edu.in</u>

^cRegional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
^d Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.

^eU. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/ Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA

Tel:+1 (513)-487-2701

E-mail: Varma.Rajender@epa.gov

3. Synthetic Strategies

3.1 Basic Principles of Ag Nanomaterial Synthesis

3.1.1. Chemical Reduction Method

	Table S1. Comprehensive literature reports for fabricating well-defined Ag N	Ps.
--	--	-----

S. No.	Method	Solvent	Precursor	Reducing agent	Stabilizer	Conditions	Product Description	Ref.
1.	Wet- chemical	<i>N, N-</i> dimethyl formamid e	AgNO3	N, N-dimethyl formamide (DMF)	Poly- (vinylpyrrolidone) (PVP)	Heated at reflux for 45 min	Flat nanoprisms of 30 nm in thickness and lateral dimension of around 200 nm	1
2.	Wet- chemical	Water	AgNO3	Sodium citrate	Sodium citrate	Heated at 100 °C for 1 h in the presence of NaOH (final solution having $pH = 7.0-7.1$)	Ag nanowires ranging from 166 nm to 12 microns in length along with average width of 35 ± 6 nm	2

3.	Wet- chemical	Water	AgNO ₃	Sodium borohydride	Glutathione	Temperature maintained in the range from 0 to 50 °C	Hollow Ag NPs with outer diameters ranging from 20 to 40 nm and shell thickness of $7.3 \pm$ 1.5 nm	3
4.	Wet- chemical	Water	AgNO ₃	Sodium borohydride	Poly(<i>N</i> -vinyl pyrrolidone) and sodium citrate	Stirring at room temperature (r.t.) for 30 min in the presence of H ₂ O ₂	Ag nanoprisms of 30- 300 nm in edge length and 3–9 nm in thickness	4
5.	Wet- chemical	Aqueous poly(meth acrylic acid) (PMAA)	AgNO3	Ascorbic acid	Poly(methacrylic acid) (PMAA)	Solution kept static at r.t. for 24 h (low pH around 2 after the addition of HNO3 is necessary for favoring preferential growth of nanowires)	Ag nanowires of around 30-40 nm in diameter	5
6.	Wet- chemical	Water	AgNO ₃	Hydroquinone	Tetramethylamm onium hydroxide (TMA(OH)), ammonia (NH ₃) and ammonium chloride (NH ₄ Cl)	Room temperature (r.t)	Ag NPs with spherical and prolate morphology in the size ranging from 5 to 60 nm	6
7.	Wet- chemical	Water	AgNO3	Glucose	Poly(<i>N</i> -vinyl pyrrolidone)	Stirred at 90 °C for 3000 min	Spherical and trigonal NPs with diameters of 65 nm and an edge length of 140 nm, respectively	7
8.	Wet- chemical	Water	AgNO3	Glucose, fructose, lactose and sucrose	Poly(vinyl pyrrolidone) (PVP) and gelatin	Stirred at 55-60 °C for 1 h at the pH between 8.5 to 9.0	Spherical Ag NPs with the average size of 35 nm	8
9.	Wet- chemical	Water	AgNO ₃	β -D-glucose	Polyethylene glycol (PEG)	Stirring in dark at 45 °C for different time periods up to 48 h	Spherical NPs of around 10 to 25 nm	9
10.	Wet- chemical	DMF	AgNO3	DMF	Poly(vinyl pyrrolidone) (PVP)	Kept in autoclave, heated from 140 to 180 °C for 1-16 h	Ag NPs possessing various morphologies ranging from nanorods, nanocubes, triangular, hexagonal and enneahedral nanoplates, to polyhedrons were formed having dimensions ranging from 10 to 150 nm	10
11.	Wet- chemical	Water	AgNO ₃	Hydrazine dihydrochlorid e	-	-	Spherical Ag NPs of 40 to 70 nm in diameter	11
12.	Wet- chemical		AgNO3	Sodium citrate and sodium borohydride	Poly(vinyl pyrrolidone) (PVP)	Different samples prepared by stirring at boiling, ice-cold and r.t. in light and dark conditions (boiling temperature in case of sodium citrate and r.t. in case of NaBH4)	Spherical and triangular shaped NPs in sizes ranging from 30 to 200 nm	12

13.	Wet- chemical	Water	AgNO ₃	Poly(vinyl pyrrolidone) (PVP)	Poly(vinyl pyrrolidone) (PVP)	Stirred at 60 °C for 21 h in air	Nanoplates of Ag between 50 and 350 nm	13
14.	Wet- chemical	Water	AgNO3	Sodium citrate and tannic acid	Poly(vinyl pyrrolidone) (PVP)	Heated at 90 °C	Spherical Ag NPs of 10–200 nm	14
15.	Wet- chemical	Water	Silver perchlorat e	Sodium borohydride	Sodium borohydride	Temperature maintained at 5 °C using an ice bath for different time periods i.e. from 1 min to 60 min	Small sized Ag NPs of 5–8 nm in diameter	15
16.	Wet- chemical	Water	Silver perchlorat e	Sodium borohydride	-	Stirred at r.t.	Ag NPs having radii of 4–8 nm	16
17.	Wet- chemical	Ethylene glycol	AgNO ₃	Ethylene glycol	Polyvinyl pyrrolidone (PVP)	Solution stirred at 160 °C for 1 h	Ag nanowires of 30–60 nm in diameter and 1– 50 μm in length	17
18.	Wet- chemical	Ethylene glycol	AgNO3	Ethylene glycol	Polyvinyl pyrrolidone (PVP)	Solution refluxed at 160 °C for 60 min	Bicrystalline Ag nanowires having diameters of 30–50 nm and length up to 50 µm	18
19.	Wet- chemical	Water	AgNO ₃	Formaldehyde and sorbitol	-	Solution sonicated for 30 min in the presence of NaOH as activator	Quasi spherical and irregular shaped Ag NPs with diameters between 20 and 50 nm	19
20.	Wet- chemical	Water	Ammonic al silver hydroxide [Ag(NH ₃) 2]OH	Glucose	n- hexadecyltrimeth ylammonium bromide (HTAB)	Heated in an autoclave at 120 °C for 8 h	Ag nanocubes with an edge length of 55 ± 5 nm	20
21.	Sonochemic al	Water	AgNO ₃	-	-	Sonicated for 1 h in atmosphere of argon- hydrogen at temperature of 10 °C	Ag NPs of around 20 nm in size	21
22.	Sonochemic al	DMF	AgNO3	DMF	Polyvinyl pyrrolidone (PVP)	Sonicated for 30 min under ambient reaction conditions	Ag nanoplates with average sizes of $120 \pm 10 \text{ nm}$	22
23.	Sonochemic al	Water	AgNO ₃	L-ascorbic acid (AA)	-	Sonicated for 4 min using an ultrasonicator having power of 100 W and frequency of 28 kHz	Ag microflowers with average sizes of 1.3µm	23
24.	Sonochemic al	Water	AgNO ₃ and Ag(S ₂ O ₃) ₂ ³⁻	KBH4	Polydichloroethyl ene (PDCE) and dibutyl-β- naphthalin sulfonate (DPS)	Sonicated for 10 min	Ag NPs with average diameters of 2 nm (using AgNO ₃) and 8.5 nm (using Ag(S ₂ O ₃) ₂ ³⁻)	24
25.	Sonochemic al	Water	AgNO ₃	Methenamine (HMTA)	Polyvinyl pyrrolidone (PVP)	Ultrasonicated for 1 h	Ag nanorods with mean diameters of 100 nm and length of 4–7 μm	25
26.	Sonochemic al	Water	AgNO ₃	Polymethylacr ylic acid (PMAA) and ultrasonic irradiation	Polymethylacrylic acid (PMAA)	Solution having pH = 4.5 sparged using argon for 2 h and sonicated for 3 h at 20 °C under argon flow	Ag nanoclusters approximately 2 nm in diameter	26

27.	Microwave	Water	AgNO ₃	Alkaline 2,7- dihydroxy naphthalene (2,7-DHN)	Polyoxyethylene isooctyl phenyl ether (TX-100)	Microwave heating for 1 min	Ag NPs in sizes ranging from 4 to 35 nm	27
28.	Microwave	Water	AgNO ₃	L-lysine or L- arginine	Starch	Microwave heating at 150 °C for 10 s under magnetic stirring	Ag NPs having mean diameters of 26.3 nm	28
29.	Microwave	Ethylene glycol	AgNO ₃	Ethylene glycol	Polyvinylpyrrolid one	Microwave heating at 300 W for 3.5 min	Ag nanowires of length 4-12 μ m and diameter of around 45.2 \pm 4.2 nm	29
30.	Microwave	Water	AgNO ₃	Polyethylene glycol	Polyethylene glycol	Microwave irradiation at 100 °C for 60 min	Ag nanorods of 50–200 nm in thickness and length of several microns	30
31.	Microwave	Water	AgNO3	β -D-glucose, sucrose and maltose	Polyvinylpyrrolid one	Microwave irradiation for 30–60 s	Ag NPs with average sizes of 3.43, 5.03 and 15.2 nm in the case of glucose, maltose and sucrose respectively	31
32.	Microwave	Water	AgNO ₃	Glutathione	Glutathione	Microwave irradiations by microwave having power of 50 W for 30-60 s	Ag NPs of 5–10 nm	32
33.	Microwave	Water	AgNO ₃	Monoethanola mine (MEA)	Polyacrylic acid (PAA)	Microwave irradiation 700 W for 60 s	Spherical Ag NPs with sizes smaller than 20 nm	33
34.	Microwave	Water	AgNO ₃	Carboxymethy lated gum kondagogu (CMGK)	Carboxymethylat ed gum kondagogu (CMGK)	Microwave irradiation from microwave operating at power of 750 W for 50-90 s	Spherical Ag NPs with sizes of 9 ± 2 nm	34
35.	Microwave	Ethylene glycol	AgNO ₃	Ethylene glycol	Poly(<i>N</i> - vinyl)pyrrolidone	Microwave heating at 140 °C	Ag NPs	35
36.	Microwave	Water	AgNO ₃	Orange peel extract	Orange peel extract	Microwave irradiation at 90 °C for 15 min	Spherical Ag NPs with diameters ranging from 1 nm to 56.1 nm	36
37.	Microwave	Ethylene glycol	AgNO ₃	Ethylene glycol	Polyacrylic acid (PAA)	Microwave heating at 200 °C for 15 min	Ultra-small Ag NPs with radii of 3 nm	37
38.	Microwave	Choline chloride and glycerol	AgNO ₃	Oleylamine (OAm)	Oleylamine (OAm)	Microwave heating at 100 °C for 30 s	Spherical Ag NPs with average sizes of $10.1 \pm$ 4.7 nm	38
39.	Greener Biosynthesi s	Water	AgNO ₃	Polyphenols present in tea and coffee extract	Polyphenols present in tea and coffee extract	Shaken at room temperature for 2 h	Spherical Ag NPs with sizes ranging between 5 and 100 nm	39
40.	Greener Biosynthesi s	Water	AgNO ₃	Cell extract of Chlorella pyrenoidosa (algae)	Cell extract of Chlorella pyrenoidosa (algae)	Solution incubated at 28 ± 2 °C for 24 h	Ag NPs with sizes between 2 and 15 nm	40
41.	Greener Biosynthesi	Water	AgNO ₃	β -D-glucose	Starch	Solution purged with argon and heated at 40 °C for 20 h	Ag NPs with sizes from 1 to 8 nm	41

42.	Greener Biosynthesi s	Water	AgNO ₃	Living alfalfa plant	Living alfalfa plant		Ag NPs with sizes between 2 and 4 nm	42
43.	Greener Biosynthesi s	Water	AgNO3	Ascorbic acid present in aqueous extract of Sapodilla (Manilkara zapota) fruit	Ascorbic acid	Solution stirred at 60 °C for 30 min	Spherical Ag NPs with sizes between 40 and 70 nm	43
44.	Greener Biosynthesi s	Water	AgNO ₃	Aloe Vera leaf extract	Aloe Vera leaf extract	Incubated in dark for overnight at room temperature	Ag NPs with sizes between 5 and 85 nm	44
45.	Greener Biosynthesi s	Water	AgNO3	Leaf extract and infusion of roots of <i>Althaea</i> <i>officinalis</i> plant	Leaf extract and infusion of roots of <i>Althaea</i> <i>officinalis</i> plant	Stirred in dark for 24 h	Ag NPs formed from leaf extract and infusion of roots were found to be 157 ± 11 nm and 293 ± 12 nm in size, respectively	45
46.	Greener Biosynthesi s	DMSO	Ag ₂ O	Alkali lignin	Alkali lignin	Solution stirred at room temperature for 12 h	Spherical Ag NPs with sizes between 17 and 27 nm	46
47.	Greener Biosynthesi s	Water	AgNO3	Cell-free extract of Pseudomonas aeruginosa isolated from mangrove	Flavonoids present in extract	Solution stirred at 100 °C for 2 h (conventional thermal treatment) Microwave irradiation operated at 900 W with 15 repetitive cycles	Spherical Ag NPs with average sizes of 14.6 ± 1 nm	47
48.	Greener Biosynthesi s	Water	AgNO3	Phytochemical spresent in leaf extract of <i>Alysicarpus</i> <i>monilifer</i>	Phytochemicalspr esent in leaf extract of <i>Alysicarpus</i> monilifer	Solution stirred for 1 h	Spherical Ag NPs with mean sizes of 15 ± 2 nm	48
49.	Greener Biosynthesi s	Water	AgNO3	Phenolic compounds, anti-oxidants, anthocyanins, flavonoids and tannins present in blackberry, blueberry, pomegranate, green tea and turmeric extracts	Phenolic compounds, anti- oxidants, anthocyanins, flavonoids and tannins present in blackberry, blueberry, pomegranate, green tea and turmeric extracts	Solution stirred overnight at room temperature	Spherical and triangular Ag NPs with sizes ranging from 5 to 200 nm	49
50.	Greener Biosynthesi s	Water	AgNO ₃	Phytochemical spresent in aqueous extract of <i>Salacia</i> <i>chinensis</i> (SC) bark	Phytochemicalspr esent in aqueous extract of <i>Salacia</i> <i>chinensis</i> (SC) bark	Stirred at room temperature for 4 h	Spherical Ag NPs with sizes between 40 and 80 nm	50
51.	Thermal decompositi on	-	Silver (I) salicylate [Ag(HSal)	-	-	Sample loaded in tubular furnace in Ar atmosphere and	Ag NPs with average size between 40 and 50 nm	51

] prepared			heated at 400 °C for		
			from AgNO ₃			3h		
52.	Thermal decompositi on	-	Silver acetate	-	-	Sample was heated in flowing dry N ₂ and N ₂ -H ₂ O gas from 323 to 773 K	Ag NPs with sizes in the range from 15 to 24 nm	52
53.	Thermal decompositi on	Water	AgNO ₃	-	Polyvinylpyrrolid one (PVP)	Calcination from 400 to 800 °C with flow rate of 50 mL/min initially in O ₂ and then in N ₂ atmosphere	Calcination temperature from 400 to 800 °C resulted in the formation of Ag NPs with sizes ranging from 7.88 to 3.29 nm	53
54.	Thermal decompositi on	-	AgNO ₃	Polyphenols present in cochineal dye and pomegranate peel extract	Polyphenols present in cochineal dye and pomegranate peel extract	Masses of cochineal dye and pomegranate peel mixed with AgNO3 were grounded and heated in a furnace up to 600 °C for 3 h.	Ag NPs with sizes of 15–50 nm.	54
55.	Continuous flow	Isoamyl ether	Silver pentafluor opropiona te	-	Trioctylamine (TOA)	Reaction conducted in a tubular microreactor heated and stirred at temperature 100 and 140 °C with flow rate varying between 0.08 mL min ⁻¹ and 0.7 mL min ⁻¹	Ag NPs with sizes between 3 and 12 nm	55
56.	Continuous flow	Water and KOH	AgNO ₃	Oleic acid sophorolipid (OASL) and stearic acid sophorolipid (SASL)	Oleic acid sophorolipid (OASL) and stearic acid sophorolipid (SASL)	Temperature of reactor maintained at 90 °C with flow rates of 35 mL min ⁻¹ and 100 mL min ⁻¹ with residence time of 300 s and 105 s	Diverse sized Ag NPs formed	56
57.	Continuous flow	Water	AgNO3	Cinnamomum camphora leaf extract	Polyols present in Cinnamomum camphora leaf extract	Microreactor heated in glycerin bath at 60 and 90 °C	Silver nanostructures of various shapes such as rods, spheres and wire formed	57
58.	Continuous flow	Water	AgNO ₃	Sodium citrate	Sodium citrate and n-butanol	Flow rate from 6-12 mL min ⁻¹ at 90 °C	Ag NPs with sizes from 1 nm to70 nm	58
59.	Continuous Microwave flow	Ethanol, ethylene glycol, water	AgNO3	Ethylene glycol	PVA, PVP, linoleic acid and sodium linoleate	Con-flow microwave reactor operated for 60 min	Ag NPs of 3–30 nm	59
60.	Continuous Microwave flow	Water	Diamine silver (I) complex [Ag (NH ₃) ₂] ⁺	Carboxymethy lcellulose (CMC)	Carboxymethylce llulose (CMC)	Solution temperature at 100 °C using microwave irradiation	Ag NPs of 1–3 nm	60
61.	Continuous Microwave flow	Ethylene glycol	AgNO ₃ and AgOAc	Ethylene glycol	Polyvinylpyrolido ne (PVP)	Microwave reactor with flow rates of 0.635 to 2.5 dm ³ /h for 3–24 s and exit	Ag NPs with sizes in the range from 10 nm to 160 nm were obtained	61

			temperature of 170	
			°C for AgNO ₃ and	
			150 °C for AgOAc	

3.2 Supported Ag-Based-based NPs

Table **S2**. Reported procedures for the synthesis of supported Ag NPs.

S. No.	Types of support	Support materials	Method	Solvent	Precursor	Reduci ng agent	Stabilizer	Condition	Product description	Ref.
1.	Carbon	Carbon nanofibers	Wet- chemical reduction	Water	Ag(NH3)2OH	Glucose	-	Heated in autoclave at 180 °C for 3 h	Ag NPs with sizes between 25 and 50 nm	62
2.	Carbon	Carbon	Wet- chemical reduction	Water	AgNO3	Glycerol	-	Stirred at r.t. for 24 h	Spherical Ag NPs with sizes of around 20 nm	63
3.	Carbon	Activated carbon	Wet- chemical reduction	Cyclohexa ne	Ag-oleate complex (synthesized using AgNO ₃ and potassium oleate)	Oleic acid	Dodecyla mine	Stirred at r.t. for 24 h	Ag NPs with sizes of 4 nm	64
4.	Carbon	Carbon	Wet- chemical reduction	Oleylamine	Silver acetate	-	-	Stirred in N ₂ atmosphere at 30 °C	Ag NPs with sizes in the range from 2 to 9 nm	65
5.	Carbon	Mesoporous Carbon produced from wood	Green	Water	Ag(NH3)2NO3 (prepared from AgNO3 and ammonia)	Functio nal groups present in natural wood (Lignin)	Functional groups present in natural wood (Lignin)	Carbonized at 800 °C in N ₂ atmosphere for 2 h	Ag NPs with sizes between 10 and 16 nm	66
6.	Carbon	Carbon particles	Wet- chemical reduction	Water	AgNO3	NaBH4	Sodium citrate	Stirred for 12 h at r.t.	Ag NPs with mean particle sizes of 15 nm	67
7.	Carbon	Carbon microsphere s (formed from <i>Brassica</i> <i>oleracea</i> pollen grains)	Green	Water	AgNO3	Active groups in Brassica oleracea pollen grains	-	Calcination in air at 300 °C for 6 h followed by carbonization at 600 °C in N ₂ atmosphere for 6 h	Crystalline Ag NPs with sizes between 50 and 100 nm	68
8.	Carbon	Graphene (Carboxylic sodium group	Wet- chemical reduction	Water	AgNO ₃	NaBH4	-	Stirred at r.t. for 1 h	Dispersed Ag NPs with diameters of	69

		functionaliz							6–20 nm on	
		ed)							graphene	
9.	Carbon	Graphene	Wet- chemical reduction	Water	[Ag(NH ₃) ₂]O H (formed from AgNO ₃ and ammonia)	Formald ehyde	Poly(<i>N</i> - vinyl-2- pyrrolidon e) (PVP)	Stirred at 60 °C for 7 min	Spherical Ag NPs	70
10.	Carbon	Graphene Oxide	Wet- chemical reduction	Water	AgNO3	Hydroq uinone	Sodium citrate	Mixture kept undisturbed for 75 min at r.t.	Spherical Ag NPs with average sizes of 80 nm	71
11.	Carbon	Graphene Oxide	Solid state chemical reaction	-	Silver acetate	Ascorbi c acid	Polyethyle ne glycol (PEG)	Mixture grinded in a mortar for 30 min at r.t.	Irregular shaped spherical Ag NPs with sizes between 50 and 200 nm	72
12.	Carbon	Graphene Oxide	Sonochemica 1	Water	AgNO3	NaBH4	Sodium citrate	Mixture initially sonicated for 2 min and then kept at r.t. for 12 h	Uniformly distributed Ag NPs of nanometric dimension	73
13.	Carbon	Graphene Oxide	Photochemic al	Water	[Ag(NH ₃) ₂]O H	-	_	Mixture was exposed to 450 W Hg lamp under constant stirring for 10 min	Dispersed Ag NPs on graphene oxide	74
14.	Carbon	Graphene Oxide	Wet- chemical reduction	Water	AgNO3	Glucose	Starch	Mixture heated at 80 °C under constant stirring for 4 h	Ag NPs with mean diameters of 22 nm	75
15.	Carbon	Graphene Oxide	Wet- chemical reduction	Water	AgNO3	Functio nal groups present in dopamin e of GO- dopamin e hybrid	Functional groups present in dopamine of GO- dopamine hybrid	Mixture stirred at r.t. for 3 h	Ag NPs with average sizes of 7.71 ± 1.34 nm	76
16.	Carbon	Reduced GO	Sonochemica 1	Water	[Ag(NH ₃)2]O H	-	-	Mixture ultrasonicated for 5, 15, 30 min with temperature of approximately 65, 75 and 80 °C respectively	Ag NPs with mean sizes varying from 4 to 13 nm formed	77
17.	Carbon	Graphene Oxide	Wet- chemical reduction	Water	AgNO ₃	DMF	-	Mixture stirred at 60 °C for 6 h	Ag NPs of nanometric	78

									dimensions	
18.	Carbon	Reduced GO	Wet- chemical reduction	Toluene	CH3COOAg	Toluene solution of tetrabut ylammo nium borohyd ride (TBAB)	-	Mixture heated at 70–80 °C for 2 h	Ag NPs with average sizes of 5 nm	79
19.	Carbon	Graphene oxide nanosheets	Wet- chemical reduction	Water	[Ag(NH3)2]O H	Glucose	-	Mixture kept undisturbed at r.t. for 90 min	-	80
20.	Carbon	Carbon nanotubes	Wet- chemical reduction	DMF	AgNO3	DMF	_	Solution with pH=6 (using HNO ₃) was first heated at 60–62 °C with the addition of AgNO ₃ solution for 1 h and then stirred at r.t. for 48 h	Ag NPs with average sizes of 34 nm	81
21.	Carbon	Carbon nanotubes	Impregnation method	Water	AgNO ₃	-	-	Stirred at r.t. for 10 h, dried at 383 K and then calcined in air at 523 K for 4 h	Ag NPs with crystallite sizes from 4 to 18 nm	82
22.	Carbon	Carbon nanotubes	Wet- chemical reduction	Methanol- water	AgNO ₃	-	-	Solution sonicated for 5 min and left at r.t. for 10-12 h	Ag NPs with average sizes of 22.6 ± 0.5 nm	83
23.	Carbon	Carbon nanotubes	Incipient wetness impregnation followed by (a)electron assisted reduction and (b) thermal calcination	Water	AgNO3	-	-	Solution impregnated for 12 h, dried and (a) underwent plasma treatment for 1 h (b) thermally decomposed at 400 °C for 3 h in N ₂	Ag NPs of 3.8 nm(in electron assisted reduction) and 25.5 nm in thermal calcination	84
24.	Carbon	Carbon nitride	Sonochemica 1	Water	AgNO3	-	-	Solution ultrasonicated at 35 °C for 150 min having 28 kHz frequency	Spherical Ag NPs of 2–10 nm	85
25.	Carbon	Carbon nitride	Microwave	Water	AgNO3	Sodium citrate	-	Solution stirred for 1 h and then heated in microwave at 80 °C for 30 min	Ag NPs with average sizes of 23.4 nm	86

26.	Carbon	Carbon nitride	Wet- chemical reduction	Water	AgNO3	NaBH4	-	Solution first stirred for 2 h after which cold NaBH4 was added at 10 °C	Spherical Ag NPs with sizes ranging between 6 and 12 nm	87
27.	Carbon	Diamond films	Microwave plasma enhanced chemical vapor deposition and electron beam metal evaporation	-	-	-	-	After 1 st diamond layer grown for 2 h, transferred to electron beam metal evaporator and 100 nm Ag NPs are embedded/ deposited at the rate of 1 Å/s	Ag NPs having diameters less than 100 nm	88
28.	Carbon	Diamond	Wet- chemical reduction	Ethylene glycol	AgNO3	Ethylen e glycol	-	Solution heated at 85 °C for 4 h under constant stirring	Ag NPs of sizes between 3 and 10 nm	89
29.	Silica	Silica	Wet- chemical reduction	Water	AgNO ₃	NaBH4	-	Stirred for 15 min	Ag NPs	90
30.	Silica	Silica	Wet- chemical reduction	Water	AgNO3	NaBH4	Starch	Solution stirred for 24 h at r.t., then dried at 110 °C for 4 h and finally calcined at 400 °C for 4 h	With different wt % Ag loadings, NPs within the range of 2–51 nm formed	91
31.	Silica	Silica	Incipient- wetness impregnation	Water	AgNO3 and Silver 2-[2-(2- methoxyethox y)ethoxy] Acetate [AgO ₂ C(CH ₂ OCH ₂) ₃ H]	H2	-	Material first dried in air and then in oven at 80 °C for 2 h and finally calcined at 500 °C for 2 h in air followed by reduction in H ₂ at 330 °C for 2 h	Ag NPs with mean diameters of 4.5 ± 3.4 nm (nitrate precursor) and 7.7 ± 3.4 nm (carboxylate precursor)	92
32.	Silica	mesoporous silica SBA- 15	Wet- chemical reduction	Water	AgNO ₃	Sodium citrate	-	Solution stirred at 80 °C for 6 h and finally dried at 90 °C	Spherical Ag NPs of 7 nm and rod shaped Ag NPs of 7 nm in diameter of 60 nm in length formed	93
33.	Silica	HMS mesoporous silica	Wet impregnation method	Water	AgNO3	H2	-	Solution stirred at r.t. for 2 h, then dried at 100 °C in air followed by	Ag NPs of 20–200 nm and up to 2µm observed	94

								reduction with H ₂ at 350 °C for 2 h	depending on the Ag loading	
34.	Silica	Mesoporous silica	Chemical reduction and impregnation	Water	[Ag(NH ₃) ₂]+ and Ag(I) chitosan complex	Glucose and NaBH4	-	Solution stirred at r.t. for 1 h	Spherical and monodisper se Ag NPs with mean diameters of 13.3 nm and 26.6 nm formed	95
35.	Silica	Mesoporous silica microcapsul e	Wet- chemical reduction	Water	AgNO3	PVP (polyvin ylpyrroli done)	PVP (polyvinyl pyrrolidon e)	Solution first stirred at r.t. for 2 h and then calcined at 550 °C for 6 h	Ag NPs having diameters of 90 nm	96
36.	Silica	MCM-41 (Mesoporou s silica)	Wet- chemical reduction	Ethylene glycol	AgNO ₃	Ethylen e glycol	PVP (polyvinyl pyrrolidon e)	Solution heated at 180 °C for 1 h, dried at 100 °C and then calcined at 500 °C for 4 h in air	Ag NPs majorly of sizes from 5 to 20 nm	97
37.	Metal oxide	Al2O3	Wet- chemical reduction	Water	AgNO3	NaBH4	3- mercaptopr opionic acid (3- MPA)	0.1 N HCl added, mixture stirred at r.t. for 1 h and calcined at 823 K for 5 h, followed by treatment with H ₂ at 473 K for 1 h	Ag NPs with mean diameters of 10 nm	98
38.	Metal oxide	Al ₂ O ₃	Incipient wetness impregnation	Water	AgNO3	-	-	Sample impregnated, dried and calcined and before reaction reduced in formier gas (10% H ₂ in N ₂) in tube oven at 300 °C for 1 h	Ag NPs with average diameters of 6.3 ± 1.4 nm	99
39.	Metal oxide	Al ₂ O ₃	Successive ion layer adsorption and reaction (SILAR)	Water	AgNO3	NaBH4	-	Al ₂ O ₃ film dipped for 10 s in aqueous AgNO ₃ solution for multiple cycles	Ag NPs of sizes varying from 5 to 14 nm	100
40.	Metal oxide	Mesoporous MnO ₂	Impregnation method	Water	[Ag(NH ₃) ₂]O H synthesized from AgNO ₃ and aqueous NH ₃	-	-	Stirred for 4 h, dried at 100 °C and then calcined at 400 °C for 5 h	Ag NPs of 3–5 nm	101

41.	Metal oxide	MnO2 nanowires	-	Water, acetone and ethanol	Ag foil	-	-	Ag foil sonicated in water, acetone and ethanol, then immersed in KMnO4 while stirring followed by the addition of H ₂ SO ₄ and stirred at r.t. for 24 h and finally solution kept undisturbed for 1 week	Monodisper se Ag NPs of 10 nm	102
42.	Metal oxide	CuO	Wet- chemical reduction	Water	AgNO3	NaBH4	PVP (polyvinyl pyrrolidon e)	Mixture stirred at 25 °C for 2 h	CuO@Ag core-shell, with the CuO core in the size of 600 nm and the shell of 10 nm in thickness	103
43.	Metal oxide	CuO	Galvanic replacement reaction	Water	AgNO3	-	-	Galvanic replacement after CuO particles added in AgNO ₃ solution and stirred for 5 h	Platelet shaped Ag NPs of around 20- 50 nm	104
44.	Metal oxide	ZnO	Biogenic greener approach	Water	AgNO3	Electron s produce d by electroc hemicall y active biofilm (EAB) on carbon paper	-	Solution containing ZnO and AgNO ₃ stirred for 5 min for Ag ⁺ adsorption on ZnO and then reduced by electrons produced by EAB in absence of air for 5 h.	Ag NPs in sizes of 7– 12 nm	105
45.	Metal oxide	ZnO microrods	Photochemic al reduction	Ethylene glycol	AgNO3	-	-	Solution under constant stirring in photochemical equipment irradiated for 15 min by 500 W Xenon lamp	Ag NPs with sizes of 20–50 nm	106
46.	Metal oxide	ZnO nanoflowers	Wet- chemical reduction	Water	AgNO3	Hydrazi ne hydrate	-	Solution stirred for 2 h for adsorption of Ag ⁺ on ZnO and obtained precipitate	Ag NPs with average sizes of 40 nm	107

			1		1		1			
								redispersed in		
								water with		
								addition of		
								hydrazine		
								hydrate under		
								constant		
								stirring		
								AgNO ₃ and		
								CeO ₂ mixed		
								under stirring,		
			Inciniont					overnight aged		
			wetness					at r.t., then		
17	Metal	Calla	imprognation	Water	A gNO ₂	-		dried at 80 °C		108
77.	oxide		mathad	w ater	AgitO3		-	for 12 h in oven	-	
			method					and finally		
								treated with		
								30% flow of		
								O ₂ /Ar at 500 °C		
								for 2 h		
								Wet powder of		
								ZrO ₂ and		
			Turining					AgNO ₃		
	Matal		Incipient	A	Ammonical			degassed in	Ag NPs	
48.	Metal	ZrO ₂	wetness	Ammonia	solution of	-	-	vacuum for 1 h,	with sizes 5-	109
	oxide		impregnation	and water	AgNO ₃			overnight dried	10 nm	
			method					at 100 °C and		
								calcined at 650		
								°C for 8 h		
								Solution		
								containing		
								AgNO ₃ and		
								ammonium		
								metatungstate		
								hydrate stirred		
								for 1 h at r.t.	Ag NPs	
49.	Metal	WO ₃	Impregnation	Water	AgNO ₃	-	-	CTAB added,	with sizes in	110
	oxide		method					stirred for 3 h	the range of	
								and finally	2–5 nm	
								dried at 110 °C		
								for 12 h and		
								heated in He		
								flow at 500 °C		
								for 6 h		
								TiO ₂ nanotube		
						NUDII	DL/D	mixed under		
	N / 1		Wet-	Water,		INABH4		static condition	Ag NPs of	
50.	Metal	11O ₂	chemical	Ethylene	AgNO ₃	and	(polyvinyl	with AgNO3	20 and 27	111
	oxide	nanotube	reduction	glycol	_	ethylene	pyrrolidon	solution at 40	nm in size	
						glycol	e)	°C for 3,7 and		
								11 h		
								Solution		
								containing	Ag NPs of	
								AgNO ₃ and	3.4 nm in	
	Metal	TiO ₂ , Al ₂ O ₃	Impregnation		4.175			support stirred	size in	112
51.	oxide	and CeO ₂	method	Water	AgNO ₃	-	-	at r.t. for 1 h,	Ag/T_1O_2 ,	112
								excess water	11.3 nm in	
								eliminated by	Ag/Al ₂ O ₃	
								rotatory-	and around	

								evaporator, dried overnight at 100 °C and calcined for 3 h at 450 °C	30 nm in Ag/CeO ₂	
52.	Metal oxide	Fe3O4	Chemical reduction	Water	AgNO3	Glucose	_	Mixture sonicated for 15 min and heated in water bath with slow stirring for 1 h	Mean size of Fe3O4-Ag core-shell was 46 nm	113
53.	Metal oxide	Iron oxide	Green synthesis	Water	AgNO3	L- arginine	L-arginine	Mixture stirred at 70 °C for 8 h	Ag-iron oxide nanocompos ite having a mean diameter of 13.8 ± 3 nm	114
54.	Boron nitride	Boron nitride	Wet- chemical reduction	Water	Silver acetate	Hydrazi ne hydrate	-	Solution stirred at r.t. for 30-40 min	Ag NPs with diameters ranging between 20 and 80 nm	115
55.	Boron nitride	Boron nitride	Microwave	DMF	AgNO3	DMF	-	Mixture sonicated for 15 min and then exposed with microwave irradiations for 2-10 s	Ag NPs with diameters of 5–10 nm	116
56.	Boron nitride	Boron nitride	Pyrolysis method	Methanol	AgNO3	-	-	Solution containing boric acid, urea and AgNO ₃ heated at 55 °C till boiling and calcined at 900 °C for 5 h in N ₂	Average size of Ag NPs on BN nanosheets was 176 nm	117
57.	Boron nitride	Boron nitride	Wet- chemical reduction	DMF	AgNO3	DMF	-	Mixture sonicated and kept overnight for uniform distribution of Ag NPs	Uniform decoration of boron nitride nanosheets with Ag NPs	118
58.	Polymer	Polyacrylam ide	Microwave	Ethylene glycol	AgNO ₃	Ethylen e glycol	Polyacryla mide	Solution irradiated with microwaves at 125 °C for 15 min	Ag NPs having diameters of 6–18 nm	119
59.	Polymer	Conjugated microporous polymer (CMP)	Simple liquid impregnation and light- induced reduction method	Water	AgNO3	-	-	Solution containing polymer and AgNO ₃ stirred overnight in dark and	Spherical Ag NPs with means diameter of 3.9 nm	120

								irradiated with		
								xenon lamp as		
								lamp source		
								under stirring		
								for 4 h		
		D I M						Mixture stirred		
		Poly N-						at r.t for 2 h	Ag NPs	
60.	Polymer	heterocyclic	-	DMSO	AgNO ₃	-	-	followed by	with sizes of	121
		carbene			U			stirring at 80	3–5 nm	
		(NHC)						°C for 10 h		
								O.1 M HNO ₃		
		Polyvinyl						and		
		alcohol						glutaraldehyde	a 1 · 1	
			Wet-					added, stirred at	Spherical	
61.	Polymer	Polyvinyl	chemical	Water	AgNO ₃	NaBH4	-	r.t. for 2 h,	Ag NPs of	122
	-	pyrrolidone	reduction		_			followed by	around 15	
		(PVP)						dipping in ice-	nm in size	
		nanocompos						cold NaBH4 for		
		ite ilim						10 s		
									Quasi	
						Chitosa			spherical Ag	
		Chitosan-				n-	Chitosan-		nanoparticle	
62	Polymor	poly(3-		Water	AgNO	poly(3-	poly(3-	Stirred at 90 °C	s with	123
02.	rorymer	hydroxybut	-	water	AginO3	hydroxy	hydroxybu	for 4 h	particle size	
		yrate)				butyrate	tyrate)		distribution	
)			of around	
									45 nm	
								Solution stirred		
								at r.t., kept in		
								supercritical		
								CO ₂ apparatus	Uniformly	
		Porous 4A-	Thermal					autoclave	distributed	124
63.	Zeolite	zeolite	treatment	Ethanol	AgNO ₃	-	-	heated at 45 °C	Ag NPs of	124
								having pressure	around 5 nm	
								of 30 MPa for 6		
								h and calcined		
								at 400 °C for 2		
								n FALLA +		
						2		FAU-Ag		
						2-		suspension	Ag NPs	
		Faujasite	Dhata shawia			nydroxy		irradiated with	with	
64.	Zeolite	type (FAU)	Photochemic	Water	AgNO ₃	-2-	-	200 W Xe-Hg	diameters of	125
		zeolite	al reduction			methyl		lamp for 60 s	0.7–1.1 nm	
						honono		atiming in a	and 5–6 nm	
						nenone		surring in a		
<u> </u>								Mixture stirred		
								at 80 °C for 16		
								h heated at 110		
		Mineral						°C in argon	Ag	
65	Zeolite	chabazite	Thermal	Water	A 9NO3	_	-	flow for 30 min	nanoparticle	126
05.	Leonie	(MC)	treatment	,, ater	ngroos			and calcined at	with sizes of	
		(1010)						400 °C for 1 h	4–9 nm	
								in presence of		
								argon		
			Wet-					Mixture stirred	Ag NPs	
66.	MOF	MOF	chemical	Acetonitril	AgNO ₃	NaBH4	-	for 12 h.	with	127
			reduction	e				methanolic	average	

								solution of NaBH4 added	sizes of 3.83 nm	
								with mixture		
								kept in ice-bath		
								and stirred		
								again at r.t. for		
								4 h		
67	MOF	MIL- 100(Fe) and	Liquid impregnation	Acetonitril	AgNOr	NaBH	_	Stirred at r.t. for 12 h, dried at 100 °C and reduced with ethanolic	with sizes between 1 and 3 nm within MIL-	128
07.	WO	UiO-66(Zr)	teennique	e	Agitos		-	solution of NaBH4 in Ar for 3 h again dried at 100 °C	100(Fe) and average diameters of 1.35nm in UiO-66(Zr)	
68.	MOF	Fe3O4@MI L-100(Fe)	Radiation assisted route	Water and Isopropyl alcohol	AgNO3	γ irradiati ons	-	Irradiated with ⁶⁰ Co-γ-rays	Well dispersed Ag nanoparticle s of 2 ± 0.8 nm	129
69.	Cellulose	Cellulose nanocrystals (CNC)	Dry milling assisted wet chemical reduction	-	AgNO3	Ascorbi c acid and cellulos e nanocry stals	Cellulose nanocrysta ls (CNC)	AgNO ₃ and cellulose milled in mortar for 30 min, kept for 24 h, ascorbic acid added and mixture again grounded for 30 min	Hexagonal shaped Ag NPs with diameters of 6–35 nm	130
70.	Cellulose	Cellulose extracted from stem of <i>Hibiscus</i> sabdariffa	Green synthetic route	Water	AgNO3	Seed extract of Hibiscus sabdarif fa	cellulose	Stirred at r.t. for 30 min	Uniformly distributed Ag nanoparticle s with average sizes of 4 nm	131
71.	Cellulose	Nanocrystal line cellulose	Green synthetic route	Water	AgNO ₃	Nanocry stalline cellulos e	Nanocrysta lline cellulose	pH maintained around 12 using NaOH and stirred at 65 °C for 2 h	Spherical Ag nanoparticle s of around 20 nm	132

3.3 Mixed Ag NPs (Bimetallic bimetallic Alloysalloys, Corecore-shell and Janus NPs)

 Solution
 Solution

S. No.	Method	Support	Solvent	Precursor	Reducing agent	Stabilizer	Conditions	Product description	Ref.
1.	Wet chemical co- reduction	-	DMF	HAuCl4 and AgNO3	DMF	PVP (polyvinyl pyrrolidon e)	Reaction mixture refluxed at 156 °C for 1 h	Au/Ag bimetallic nanocubes in the edge length of 150 nm	133

	1			r					
2.	Wet chemical co- reduction	-	Water	AgNO3	Ascorbic acid	PVP (polyvinyl pyrrolidon e)	Aq. ammonia added to AgNO ₃ and PVP solution followed by addition of HAuCl4 and KI and stirred at r.t. for 15 min with subsequent addition of ascorbic acid	Au/Ag multispiked NPs with sizes between 70 and 130 nm	134
3.	Wet chemical reduction	-	Mesitylen e	Nickel acetylacetonat e and silver acetylacetonat e	-	-	Mixture heated at 80 °C for 30 min and further heated with reflux at 200 °C for 2 h under flow of H ₂ gas	Ag-Ni Snowman NPs with the size of Ni being 12.2 ± 3.1 and Ag being 11 ± 2.3 nm	135
4.	Green synthesis	-	Water	HAuCl4 and Ag(NH3)2OH	Degraded pueraria starch (DPS)	Degraded pueraria starch (DPS)	Stirred for 24 h at r.t.	Spherical bimetallic Au/Ag NPs with average diameters of 32 nm	136
5.	Green synthesis	-	Water	HAuCl4 and AgNO3	Aqueous extract of Sago pondweed (Potamoge ton pectinatus L.)	Flavones and proteins in aqueous extract of Sago pondweed	Mixture heated at 80 °C for 30 min	At pH =4, hexagonal, polyhedron Au/Ag bimetallic NPs with average sizes of $10.6 \pm$ 5 nm and at pH =12 spherical NPs with average sizes of $6.6 \pm$ 2.4 nm formed	137
6.	Wet chemical reduction	-	Water	AgNO3 and CuCl2	Glucose	Hexadecyl amine (HDA)	Mixture containing precursor salts, glucose and HDA stirred for 5 h and then heated at 100 °C for 2 h with vigorous stirring	Alloyed Cu/Ag bimetallic NPs of 85 nm with spherical morphology	138
7.	Light (radiolytic) methodology	-	Methanol	AgClO4 and NiSO4	Sodium citrate and y radiations	Sodium citrate and polyvinyl alcohol	Solution deaerated by argon for 12 min and further irradiated with ⁶⁰ Co-y source for 18 min	Bimetallic Ag-Ni alloy NPs of various ratios with diameters ranging between 4 and 8 nm	139
8.	Laser mediated	-	Water	HAuCl4 and AgNO3	-	-	Solution irradiated with Nd:YAG laser with wavelength of 532 nm and 355 nm for 30 min	Bimetallic Au-Ag alloy NPs with spherical and sintered morphology	140
9.	Wet chemical reduction	-	Water	FeSO4 and AgNO3	NaBH4	Sodium citrate	Aqueous AgNO ₃ was injected to solution containing FeSO ₄ , NaBH4 and sodium citrate after 1, 5 and 15 min	Bimetallic monodisperse Ag core (4 nm) and Fe shell (8 nm) formed after AgNO ₃ injected after 1 min, Fe core and Ag shell formed after 5 min and Fe clusters of around 150 nm after 15 min were formed	141
10.	Wet chemical reduction	-	Water	AgNO3	Ascorbic acid and NaOH	Sodium citrate	To solution containing Au seeds, NaOH for maintaining pH = 8.5. ascorbic acid and AgNO ₃ added at r.t. and kept for 30 min	Au@Ag core shell NPs with diameters from 30 to 110 nm formed	142

11.	Sonochemic al	-	Ethylene glycol	HAuCl4 and AgNO3	Ultrasonic irradiation s	PEG (Poly Ethylene glycol)	Solution sonicated at r.t. for 30 min in argon atmosphere	Bimetallic Au@Ag NPs with diameters of 20 nm	143
12.	Microwave	-	Ethylene glycol	HAuCl4 and AgNO3	Ethylene glycol	PVP (polyvinyl pyrrolidon e)	Solution irradiated with microwaves for 2 min	Au@Ag core-shell nanocrystals with triangular, square and rhombic, rods and wire morphology	144
13.	Wet chemical reduction	Carbon nitride (C3N4)	Water	AgNO3, AuCl4, K2PdCl4, K2PtCl4	NaBH4	-	To solution containing C ₃ N ₄ /Ag, aqueous solution of AuCl4, K ₂ PdCl4, K ₂ PtCl4 were added differently and stirred for 1 h to make C ₃ N ₄ /AgAu, C ₃ N ₄ /AgPd and C ₃ N ₄ /AgPt composites	In C ₃ N ₄ /AgPd, hollow and spherical bimetallic AgPd NPs with sizes around 18 ± 3 nm, in C ₃ N ₄ /AgPt hollow and spherical AgPt size of 9 ± 4 nm and in C ₃ N ₄ /AgAu spherical AgAu in the size of 14± 4 nm formed	145
14.	Wet chemical reduction	Carbon nitride nanotub es	Water	AgNO3 and CuNO3	NaBH4	-	Suspension stirred at r.t. for 1 h and then aged for 90 min	Bimetallic Ag-Cu NPs with sizes around 10 nm on carbon nitride nanotubes	146
15.	Impregnatio n method	Carbon	Ethylene glycol	AgNO3 and Pd(OAc)2	Ethylene glycol	Polyvinyl pyrrolidon e (PVP)	Solution containing carbon and PdAg colloidal solution was stirred for 48 h at r.t.	Uniform sized PdAg alloy NPs of sizes 3–5 nm formed	147
16.	Electrochemi cal reduction	Graphen e paper	10 mM CuSO4 and 10 mM AgNO3 electrolyt e	CuSO4 and AgNO3 Copper ring as anode and copper wire as cathode	-	-	Electrochemical deposition carried out using constant voltage of 4 V	Average size of Cu/Ag bimetallic dendrites (in equal ratio) on graphene paper was around $50 \pm$ 5 nm through SEM analysis	148
17.	Wet chemical reduction	Graphen e oxide	Ethylene glycol and water	AgNO3 and (NH4)2PdCl6	Ethylene glycol and urea	-	Solution stirred for 3 h and heated at 120 °C for 1 h	Bimetallic Pd-Ag NPs with average sizes of 5 nm	149
18.	Brust method, Galvanic exchange strategy followed by Langmuir– Blodgett method	Water/m ethanol (v/v = 1:1) solution	AgNO3 and HAuCl4	NaBH4	Polar MPD ligands (stabilized the extra electron density on the gold sites)	Water/met hanol (v/v = 1:1) solution	AgC6 Nanoparticles synthesized using Brust Method and mixed with HAuCl4 and MPD in methanol with stirring at r.t. followed by interfacial galvanic exchange reactions between AgC6 nanoparticles and Au ^I -MPD complex	AgAu Bimetallic Janus NPs with average core diameters of $5.70 \pm$ $0.82, 5.79 \pm 1.02$, and 5.36 ± 0.85 nm	150
19.	Chemical etching methodology	-	Water	AgNO3 and HAuCl4	NaBH4	Sodium citrate	Au@Ag semishell Janus NPs were prepared by etching off a part of the Ag shell from the Au@Ag core- shell NPs using a mixture of H ₂ O ₂ and NH ₄ OH (1:1) water solution	Au core@Ag semishell Janus NPs with 6.4 ± 1.0 nm in diameter, as evidenced through the core-size histogram of TEM analysis	151

20.	One-pot controllable thermal decompositi on method	-	Water	Silver diethyldithioc arbamate (Ag–DEDTC) prepared using AgNO ₃ and sodium diethyldithioc arbamate.	-	-	Thermal decomposition was carried out at 180 °C for 30 min under a N ₂ atmosphere. Thereafter, thioglycolic acid was used for the preparation of Ag- Ag ₂ S JNPs coupled P25 TiO ₂ composites	Eggplant shaped Ag- Ag2S Janus particles of 10–40 nm.	152
21.	One-step co- precipitation technique	Cellulos e template	Water	AgNO3	-	-	To a solution of NaOH-thiourea-urea H ₂ O of 8: 6.5: 8:77.5 ratio, cellulose was added under stirring, followed by addition of AgNO ₃	Spherical Ag Ag ₂ S Janus NPs with the sizes ranging from 10 to 15 nm	153
22.	Pickering emulsion and combination of grafting from and grafting to approaches	Silica core with two polymeri c shells	Water	HAuCl4 and AgNO3	Triethyla mine	Polymer (PAA)	Bicomponent polymeric JPs were prepared using pickering emulsion using silica spheres to which ATRP initiator was added. Then, poly(tert-butyl acrylate) was grafted followed by grafting of carboxy terminated polystyrene (PS- COOH) onto PAA/NH2-JP. Finally, AgNO3 was added to a dispersed solution of PAA/PS-JP in water, followed by trimethylamine.	Janus particles of core diameters -200 nm and a shell comprising of two polymers polyacrylic acid (PAA) and polystyrene (PS).	154

3.4 AgO and Ag₂O NPs

Table S4. Reported	protocols fo	r synthesizing	AgO and	Ag ₂ O na	nocomposites.
$\frac{1}{2}$ in Reported	protocols io	i synthesizing	igo unu	1 <u>5</u> 20 na	nocomposites.

S. No.	Method	Support	Solvent	Precursor	Reducing agent	Stabilizer	Conditions	Product description	Ref.
1.	Thermal treatment	-	Water	[Mg(NO ₃)2], AgO and glycine	-	-	Solution stirred at 185 °C, heated for 5 h in electrical heating mantle, annealed in furnace for 15 h at 900 °C	Mg doped AgO nanocube with average diameters of 20 nm formed	155
2.	Precipitation method	-	Water	AgNO3	-	Glucose, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS) and cetyltrimethylamm onium bromide (CTAB)	Solution containing AgNO ₃ and surfactant stirred for 30 min, K ₂ S ₂ O ₈ and KOH added and stirred for 1 h at 50 °C	Agglomerated Nanosheets and NPs of AgO formed	156

3.	Sol-gel synthesis	TiO2	Water	AgNO3 and tetra-n-butyl titanate	-	-	Solution containing AgNO3 and TiO2 stirred for 30 min, K ₂ S ₂ O ₈ and NaOH added and stirred at 50 °C for 1 h	AgO-TiO ₂ nanocomposite in the size of around 30–40 nm	157
4.	Green combustion method	-	Water	AgNO3	Cantaloup e seeds extract	-	Heated in muffle furnace at 500 °C for <5min	Spherical Ag ₂ O nanoparticles with diameters of 30 nm	158
5.	Green Combustion method	-	-	AgNO3	Centella Asiatica and Tridax plant powder	-	Heated in muffle furnace at 600 °C	Spherical Ag ₂ O nanoparticles of 11–12 nm	159
6.	Photochemic al reduction	TiO ₂	Water	AgNO ₃	UV radiations	-	Irradiated with 40 W UV lamp under stirring for 1 h	Ag ₂ O nanoparticles of 5-20 nm on TiO ₂	160
7.	Wet chemical reduction	Mesopor ous Silica	Water and methano 1	AgNO3	NaOH	-	Stirred at r.t. for 8 h	Cubic Ag ₂ O nanoparticles of 20–40 nm on mesoporous silica	161
8.	In-situ deposition	Mg(OH) ² nanoplat es	Water	AgNO3	-	-	Stirred at r.t. for 12 h	Ag ₂ O nanoparticles of 5 nm on Mg(OH) ₂ nanoplates	162
9.	Photochemic al reduction	ZnO	Water and ethanol	AgNO ₃	UV radiations	-	UV radiations for 30 min	Ag- Ag ₂ O nanoplates	163

References

- 1. I. Pastoriza-Santos and L. M. Liz-Marzán, Nano Lett., 2002, 2, 903-905.
- 2. K. Caswell, C. M. Bender and C. J. Murphy, *Nano Lett.*, 2003, **3**, 667-669.
- 3. A. Ben Moshe and G. Markovich, *Chem. Mater.*, 2011, **23**, 1239-1245.
- 4. G. S. Métraux and C. A. Mirkin, *Adv. Mater.*, 2005, 17, 412-415.
- 5. D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng and L. Huang, *Chem. Mater.*, 2004, 16, 872-876.
- 6. M. Pérez, R. Moiraghi, E. Coronado and V. Macagno, *Cryst. Growth Des.*, 2008, **8**, 1377-1383.
- S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak and M. Epple, *Chem. Mater.*, 2014, 26, 951-957.
- P. Sahoo, S. Kamal, T. J. Kumar, B. Sreedhar, A. Singh and S. Srivastava, *Def. Sci. J.*, 2009, 59, 447-455.
- K. Shameli, M. Bin Ahmad, S. D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi and Y. Abdollahi, *Int. J. Mol. Sci.*, 2012, 13, 6639-6650.
- Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa and M. Nogami, *J. Phys. Chem. C*, 2007, 111, 9095-9104.
- 11. U. Nickel, A. zu Castell, K. Pöppl and S. Schneider, *Langmuir*, 2000, 16, 9087-9091.

- M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz and S. Naseem, *Nanomaterials*, 2016, 6, 74.
- 13. I. Washio, Y. Xiong, Y. Yin and Y. Xia, Adv. Mater., 2006, 18, 1745-1749.
- 14. N. G. Bastús, F. Merkoçi, J. Piella and V. Puntes, Chem. Mater., 2014, 26, 2836-2846.
- 15. D. L. Van Hyning and C. F. Zukoski, *Langmuir*, 1998, 14, 7034-7046.
- M. Wuithschick, B. Paul, R. Bienert, A. Sarfraz, U. Vainio, M. Sztucki, R. Kraehnert, P. Strasser, K. Rademann and F. Emmerling, *Chem. Mater.*, 2013, 25, 4679-4689.
- 17. Y. Sun, B. Mayers, T. Herricks and Y. Xia, *Nano Lett.*, 2003, **3**, 955-960.
- 18. Y. Sun and Y. Xia, *Adv. Mater.*, 2002, **14**, 833-837.
- Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia and S. Venkateswaran, J. Mater. Chem., 2002, 12, 522-527.
- 20. D. Yu and V. W.-W. Yam, J. Am. Chem. Soc., 2004, 126, 13200-13201.
- R. Salkar, P. Jeevanandam, S. Aruna, Y. Koltypin and A. Gedanken, *J. Mater. Chem.*, 1999, 9, 1333-1335.
- L. P. Jiang, S. Xu, J. M. Zhu, J. R. Zhang, J. J. Zhu and H. Y. Chen, *Inorg. Chem.*, 2004, 43, 5877-5883.
- M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan and W. Tao, J. Mater. Chem., 2011, 21, 18817-18824.
- 24. J. P. Zhang, P. Chen, C. H. Sun and X. J. Hu, Appl. Catal., A, 2004, 266, 49-54.
- Y. P. Zhu, X. K. Wang, W. I. Guo, J. G. Wang and C. Wang, *Ultrason. Sonochem.*, 2010, 17, 675-679.
- 26. H. Xu and K. S. Suslick, ACS nano, 2010, 4, 3209-3214.
- 27. S. Kundu, K. Wang and H. Liang, J. Phys. Chem. C, 2009, 113, 134-141.
- B. Hu, S. B. Wang, K. Wang, M. Zhang and S. H. Yu, J. Phys. Chem. C, 2008, 112, 11169-11174.
- 29. L. Gou, M. Chipara and J. M. Zaleski, Chem. Mater., 2007, 19, 1755-1760.
- 30. M. N. Nadagouda and R. S. Varma, Cryst. Growth Des., 2008, 8, 291-295.
- 31. N. N. Mallikarjuna and R. S. Varma, Cryst. Growth Des., 2007, 7, 686-690.
- 32. B. Baruwati, V. Polshettiwar and R. S. Varma, Green Chem., 2009, 11, 926-930.
- 33. Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie and Z. Sun, RSC Adv., 2017, 7, 34041-34048.
- K. Seku, B. R. Gangapuram, B. Pejjai, K. K. Kadimpati and N. Golla, *J. nanostructure chem.*, 2018, 8, 179-188.
- 35. S. Özkar and R. G. Finke, J. Phys. Chem. C, 2017, 121, 27643-27654.
- G. A. Kahrilas, L. M. Wally, S. J. Fredrick, M. Hiskey, A. L. Prieto and J. E. Owens, ACS Sustain. Chem. Eng., 2014, 2, 367-376.
- 37. P. E. Saloga, C. Kästner and A. F. Thünemann, *Langmuir*, 2018, 34, 147-153.
- 38. L. Adhikari, N. E. Larm, N. Bhawawet and G. A. Baker, ACS Sustain. Chem. Eng., 2018, 6,

5725-5731.

- 39. M. N. Nadagouda and R. S. Varma, *Green Chem.*, 2008, **10**, 859-862.
- 40. N. Aziz, M. Faraz, R. Pandey, M. Shakir, T. Fatma, A. Varma, I. Barman and R. Prasad, *Langmuir*, 2015, **31**, 11605-11612.
- 41. P. Raveendran, J. Fu and S. L. Wallen, J. Am. Chem. Soc., 2003, 125, 13940-13941.
- 42. J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani and M. Jose-Yacaman, *Langmuir*, 2003, **19**, 1357-1361.
- 43. P. Sutradhar and M. Saha, J. Phys. Chem. C, 2016, 120, 8941-8949.
- J. M. Ashraf, M. A. Ansari, H. M. Khan, M. A. Alzohairy and I. Choi, *Scientific reports*, 2016, 6, 20414.
- D. T. Rheder, M. Guilger, N. Bilesky-José, T. Germano-Costa, T. Pasquoto-Stigliani, T. B. B.
 Gallep, R. Grillo, C. dos Santos Carvalho, L. F. Fraceto and R. Lima, *Sci. Rep.*, 2018, 8, 1-11.
- 46. Y. Xue, X. Qiu, Z. Liu and Y. Li, ACS Sustain. Chem. Eng., 2018, 6, 7695-7703.
- 47. S. Boopathi, S. Gopinath, T. Boopathi, V. Balamurugan, R. Rajeshkumar and M. Sundararaman, *Ind. Eng. Chem. Res.*, 2012, **51**, 5976-5985.
- M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi and Z. K. Shinwari, *J. Interdiscip. Nanomed.*, 2017, 2, 131-141.
- M. N. Nadagouda, N. Iyanna, J. Lalley, C. Han, D. D. Dionysiou and R. S. Varma, ACS Sustain. Chem. Eng., 2014, 2, 1717-1723.
- 50. K. Jadhav, S. Deore, D. Dhamecha, R. Hr, S. Jagwani, S. Jalalpure and R. Bohara, ACS Biomater. Sci. Eng., 2018, 4, 892-899.
- 51. S. M. Hosseinpour-Mashkani and M. Ramezani, Mater. Lett., 2014, 130, 259-262.
- 52. M. Nakano, T. Fujiwara and N. Koga, J. Phys. Chem. C, 2016, 120, 8841-8854.
- L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari and K. A. Matori, *Materials*, 2017, 10, 402.
- 54. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri and M. Salavati-Niasari, *Sci. Rep.*, 2016, **6**, 32539.
- 55. X. Z. Lin, A. D. Terepka and H. Yang, *Nano Lett.*, 2004, 4, 2227-2232.
- D. R. Kumar, M. Kasture, A. Prabhune, C. Ramana, B. Prasad and A. Kulkarni, *Green Chem.*, 2010, 12, 609-615.
- J. Huang, L. Lin, Q. Li, D. Sun, Y. Wang, Y. Lu, N. He, K. Yang, X. Yang and H. Wang, *Ind. Eng. Chem. Res.*, 2008, 47, 6081-6090.
- 58. K. -J. Wu and L. Torrente-Murciano, *React. Chem. Eng.*, 2018, 3, 267-276.
- 59. Y. Groisman and A. Gedanken, J. Phys. Chem. C, 2008, 112, 8802-8808.
- 60. S. Horikoshi, H. Abe, K. Torigoe, M. Abe and N. Serpone, *Nanoscale*, 2010, 2, 1441-1447.
- 61. G. Dzido, P. Markowski, A. Małachowska-Jutsz, K. Prusik and A. B. Jarzębski, *J. Nanoparticle Res.*, 2015, **17**, 27.

- X. Huang, B. Li, L. Li, H. Zhang, I. Majeed, I. Hussain and B. Tan, J. Phys. Chem. C, 2011, 116, 448-455.
- A. C. Garcia, L. H. Gasparotto, J. F. Gomes and G. Tremiliosi-Filho, *Electrocatalysis*, 2012, 3, 147-152.
- 64. S. Guo, Q. Zhang, H. Li, H. Guo and W. He, Nano Research, 2017, 10, 3261-3267.
- Z. Wang, L. Xin, X. Zhao, Y. Qiu, Z. Zhang, O. A. Baturina and W. Li, *Renew. Energy*, 2014, 62, 556-562.
- 66. T. Ji, L. Chen, M. Schmitz, F. S. Bao and J. Zhu, Green Chem., 2015, 17, 2515-2523.
- 67. J. Guo, A. Hsu, D. Chu and R. Chen, J. Phys. Chem. C, 2010, 114, 4324-4330.
- 68. Y. Wang, Z. Liu, B. Han, Y. Huang and G. Yang, *Langmuir*, 2005, **21**, 10846-10849.
- X. Lu, H. Qi, X. Zhang, Z. Xue, J. Jin, X. Zhou and X. Liu, *Chem. Commun.*, 2011, 47, 12494-12496.
- 70. X._-Z. Tang, Z. Cao, H._-B. Zhang, J. Liu and Z._-Z. Yu, Chem. Commun., 2011, 47, 3084-3086.
- 71. Q. Bao, D. Zhang and P. Qi, J. Colloid Interface Sci., 2011, 360, 463-470.
- 72. Y. Li, Y. Cao, J. Xie, D. Jia, H. Qin and Z. Liang, *Catal. Commun.*, 2015, 58, 21-25.
- 73. S. Liu, J. Tian, L. Wang and X. Sun, *Carbon*, 2011, 49, 3158-3164.
- 74. Y. Zhang, X. Yuan, Y. Wang and Y. Chen, J. Mater. Chem., 2012, 22, 7245-7251.
- W. Shao, X. Liu, H. Min, G. Dong, Q. Feng and S. Zuo, *ACS Appl. Mater. Interfaces*, 2015, 7, 6966-6973.
- 76. E. K. Jeon, E. Seo, E. Lee, W. Lee, M.-K. Um and B.-S. Kim, *Chem. Commun.*, 2013, **49**, 3392-3394.
- 77. A. M. Golsheikh, N. Huang, H. Lim and R. Zakaria, *RSC Adv.*, 2014, 4, 36401-36411.
- A. Perdikaki, A. Galeou, G. Pilatos, I. Karatasios, N. K. Kanellopoulos, A. Prombona and G. N. Karanikolos, *ACS Appl. Mater. Interfaces*, 2016, 8, 27498-27510.
- 79. S. K. Bhunia and N. R. Jana, ACS Appl. Mater. Interfaces, 2014, 6, 20085-20092.
- 80. C. Xu and X. Wang, *Small*, 2009, **5**, 2212-2217.
- A. Krainoi, C. Kummerlöwe, N. Vennemann, Y. Nakaramontri, S. Pichaiyut and C. Nakason, J. Appl. Polym. Sci., 2019, 136, 47281.
- 82. J. Zheng, X. Duan, H. Lin, Z. Gu, H. Fang, J. Li and Y. Yuan, *Nanoscale*, 2016, **8**, 5959-5967.
- P. Singh, G. Lamanna, C. Ménard-Moyon, F. M. Toma, E. Magnano, F. Bondino, M. Prato, S. Verma and A. Bianco, *Angew. Chem. Int. Ed.*, 2011, 50, 9893-9897.
- X. Yan, S. Li, J. Bao, N. Zhang, B. Fan, R. Li, X. Liu and Y.-X. Pan, ACS Appl. Mater. Interfaces, 2016, 8, 17060-17067.
- 85. M. K. Kundu, M. Sadhukhan and S. Barman, J. Mater. Chem. B, 2015, 3, 1289-1300.
- P. Veerakumar, C. Rajkumar, S.-M. Chen, B. Thirumalraj and K.-C. Lin, J. Electroanal. Chem., 2018, 826, 207-216.

- 87. S. B. Patel and D. V. Vasava, *ChemistrySelect*, 2018, **3**, 471-480.
- 88. S. Li, J. A. Bandy and R. J. Hamers, ACS Appl. Mater. Interfaces, 2018, 10, 5395-5403.
- 89. J. C. Espinosa, S. Navalón, M. Álvaro and H. García, *ChemCatChem*, 2015, 7, 2682-2688.
- 90. Z.-J. Jiang, C.-Y. Liu and L.-W. Sun, J. Phys. Chem. B, 2005, 109, 1730-1735.
- 91. V. Raji, M. Chakraborty and P. A. Parikh, Ind. Eng. Chem. Res., 2012, 51, 5691-5698.
- 92. M. Steffan, A. Jakob, P. Claus and H. Lang, *Catal. Commun.*, 2009, 10, 437-441.
- 93. B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, *Catal. Commun.*, 2011, 12, 1104-1108.
- 94. E. Charistoudi, M. G. Kallitsakis, I. Charisteidis, K. S. Triantafyllidis and I. N. Lykakis, *Adv. Synth. Catal.*, 2017, **359**, 2949-2960.
- 95. D. He, M. Kacopieros, A. Ikeda-Ohno and T. D. Waite, *Environ. Sci. Technol.*, 2014, **48**, 12320-12326.
- H. Yang, Y. Liu, Q. Shen, L. Chen, W. You, X. Wang and J. Sheng, *J. Mater. Chem.*, 2012, 22, 24132-24138.
- 97. Z. Chen and R. L. Luck, Green Chem., 2016, 18, 3354-3359.
- K. Mori, A. Kumami, M. Tomonari and H. Yamashita, J. Phys. Chem. C, 2009, 113, 16850-16854.
- R. Poreddy, E. J. García-Suárez, A. Riisager and S. Kegnæs, *Dalton. Trans.*, 2014, 43, 4255-4259.
- 100. K. G. Stamplecoskie and J. S. Manser, ACS Appl. Mater. Interfaces, 2014, 6, 17489-17495.
- 101. B. Bai, Q. Qiao, H. Arandiyan, J. Li and J. Hao, *Environ. Sci. Technol.*, 2016, **50**, 2635-2640.
- 102. H. Xia, C. Hong, X. Shi, B. Li, G. Yuan, Q. Yao and J. Xie, J. Mater. Chem. A, 2015, 3, 1216-1221.
- N. Bouazizi, J. Vieillard, P. Thebault, F. Desriac, T. Clamens, R. Bargougui, N. Couvrat, O. Thoumire, N. Brun and G. Ladam, *Dalton. Trans.*, 2018, 47, 9143-9155.
- 104. X. Chen, S. Ku, J. A. Weibel, E. Ximenes, X. Liu, M. Ladisch and S. V. Garimella, ACS Appl. Mater. Interfaces, 2017, 9, 39165-39173.
- 105. S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee and M. H. Cho, J. Phys. Chem. C, 2013, 117, 27023-27030.
- 106. Q. Deng, X. Duan, D. H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai and G. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 6030-6037.
- 107. P. Fageria, S. Gangopadhyay and S. Pande, RSC Adv., 2014, 4, 24962-24972.
- 108. Z. Qu, F. Yu, X. Zhang, Y. Wang and J. Gao, Chem. Eng. J., 2013, 229, 522-532.
- 109. L. Kundakovic and M. Flytzani-Stephanopoulos, Appl. Catal. A, 1999, 183, 35-51.
- 110. S. Ghosh, S. S. Acharyya, T. Sasaki and R. Bal, Green Chem., 2015, 17, 1867-1876.
- 111. Y. Liang, Z. Cui, S. Zhu, Y. Liu and X. Yang, J. Catal., 2011, 278, 276-287.
- 112. J. Zhang, Y. Li, Y. Zhang, M. Chen, L. Wang, C. Zhang and H. He, Sci. Rep., 2015, 5, 12950.
- 113. D. Tang, R. Yuan and Y. Chai, J. Phys. Chem. B, 2006, 110, 11640-11646.

- 114. J. R. Chiou, B. H. Lai, K. C. Hsu and D. H. Chen, J. Hazard. Mater., 2013, 248, 394-400.
- 115. Y. Lin, C. E. Bunker, K. S. Fernando and J. W. Connell, *ACS Appl. Mater. Interfaces*, 2012, 4, 1110-1117.
- 116. G. Gao, A. Mathkar, E. P. Martins, D. S. Galvão, D. Gao, P. A. da Silva Autreto, C. Sun, L. Cai and P. M. Ajayan, J. Mater. Chem. A, 2014, 2, 3148-3154.
- 117. J. Pang, Y. Chao, H. Chang, H. Li, J. Xiong, Q. Zhang, G. Chen, J. Qian, W. Zhu and H. Li, ACS Sustain. Chem. Eng., 2018, 6, 4948-4957.
- 118. A. Pullanchiyodan, K. S. Nair and K. P. Surendran, ACS omega, 2017, 2, 8825-8835.
- 119. J. F. Zhu and Y. J. Zhu, J. Phys. Chem. B, 2006, 110, 8593-8597.
- H. L. Cao, H. B. Huang, Z. Chen, B. Karadeniz, J. Lü and R. Cao, *ACS Appl. Mater. Interfaces*, 2017, 9, 5231-5236.
- 121. D. Yu, M. X. Tan and Y. Zhang, Adv. Synth. Catal., 2012, 354, 969-974.
- 122. W. H. Eisa, T. Abdel-Baset, E. M. Mohamed and S. Mahrous, J. Inorg. Organomet. Polym. Mate., 2017, 27, 1703-1711.
- D. Silvestri, S. Wacławek, A. Venkateshaiah, K. Krawczyk, B. Sobel, V. V. Padil, M. Černík and R. S. Varma, *Carbohydr. Polym.*, 2020, 232, 115806.
- 124. Y. Wu, C. Li, J. Bai and J. Wang, Results Phys., 2017, 7, 1616-1622.
- M. Zaarour, M. El Roz, B. Dong, R. Retoux, R. Aad, J. Cardin, C. Dufour, F. Gourbilleau, J.-P. Gilson and S. Mintova, *Langmuir*, 2014, **30**, 6250-6256.
- 126. Y. Liu, Z. Zhu, G. Liu, Z. Xu, S. M. Kuznicki and H. Zhang, J. Phys. Chem. C, 2011, 115, 14591-14597.
- G. Dutta, A. K. Jana, D. K. Singh, M. Eswaramoorthy and S. Natarajan, *Chem. Asian J.*, 2018, 13, 2677-2684.
- 128. N. N. Zhu, X. H. Liu, T. Li, J. G. Ma, P. Cheng and G. M. Yang, *Inorg. Chem.*, 2017, **56**, 3414-3420.
- S. Chang, C. Liu, Y. Sun, Z. Yan, X. Zhang, X. Hu and H. Zhang, ACS Appl. Nano Mater., 2020, 3, 2302-2309.
- 130. W. H. Eisa, A. M. Abdelgawad and O. J. Rojas, ACS Sustain. Chem. Eng., 2018, 6, 3974-3983.
- 131. M. Goswami, D. Baruah and A. M. Das, New J. Chem., 2018, 42, 10868-10878.
- 132. H. Heidari and M. Karbalaee, Appl. Organomet. Chem., 2019, 33, e5070.
- K. Jia, L. Yuan, X. Zhou, L. Pan, P. Wang, W. Chen and X. Liu, *RSC Adv.*, 2015, 5, 58163-58170.
- M. Sharma, P. R. Pudasaini, F. Ruiz-Zepeda, E. Vinogradova and A. A. Ayon, ACS Appl. Mater. Interfaces, 2014, 6, 15472-15479.
- 135. C. Kim, B. L. Suh, H. Yun, J. Kim and H. Lee, ACS Catal., 2017, 7, 2294-2302.
- 136. B. Xia, F. He and L. Li, *Langmuir*, 2013, **29**, 4901-4907.
- 137. A. A. AbdelHamid, M. A. Al-Ghobashy, M. Fawzy, M. B. Mohamed and M. M. Abdel-

Mottaleb, ACS Sustain. Chem. Eng., 2013, 1, 1520-1529.

- 138. W. Wu, M. Lei, S. Yang, L. Zhou, L. Liu, X. Xiao, C. Jiang and V. A. Roy, *J. Mater. Chem. A*, 2015, 3, 3450-3455.
- 139. Z. Zhang, T. M. Nenoff, K. Leung, S. R. Ferreira, J. Y. Huang, D. T. Berry, P. P. Provencio and R. Stumpf, *J. Phys. Chem. C*, 2010, **114**, 14309-14318.
- Z. Peng, B. Spliethoff, B. Tesche, T. Walther and K. Kleinermanns, *J. Phys. Chem. B*, 2006, 110, 2549-2554.
- K. J. Carroll, D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. Brown III, M. L. Taheri and E. E. Carpenter, *Chem. Mater.*, 2010, 22, 6291-6296.
- A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste and I. Pastoriza-Santos, *Langmuir*, 2013, 29, 15076-15082.
- 143. S. Anandan, F. Grieser and M. Ashokkumar, J. Phys. Chem. C, 2008, 112, 15102-15105.
- M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino and M. Nishio, *Cryst. Growth Des.*, 2006, 6, 1801-1807.
- 145. R. Nazir, P. Fageria, M. Basu and S. Pande, J. Phys. Chem. C., 2017, 121, 19548-19558.
- 146. Y. Zhu, A. Marianov, H. Xu, C. Lang and Y. Jiang, ACS Appl. Mater. Interfaces, 2018, 10, 9468-9477.
- M. Navlani-García, K. Mori, A. Nozaki, Y. Kuwahara and H. Yamashita, *Ind. Eng. Chem. Res.*, 2016, 55, 7612-7620.
- 148. D. Li, J. Liu, H. Wang, C. J. Barrow and W. Yang, Chem. Commun., 2016, 52, 10968-10971.
- 149. J. Liu, H. Zhou, Q. Wang, F. Zeng and Y. Kuang, J. Mater. Sci., 2012, 47, 2188-2194.
- 150. Y. Song, K. Liu and S. Chen, *Langmuir*, 2012, 28, 17143-17152.
- L. Chen, C. P. Deming, Y. Peng, P. Hu, J. Stofan and S. Chen, *Nanoscale*, 2016, 8, 14565-14572.
- 152. F. Jiang, Q. Tian, M. Tang, Z. Chen, J. Yang and J. Hu, CrystEngComm, 2011, 13, 7189-7193.
- 153. D. Dutta, R. Hazarika, P. D. Dutta, T. Goswami, P. Sengupta and D. K. Dutta, *RSC Adv.*, 2016, 6, 85173-85181.
- 154. A. Kirillova, C. Schliebe, G. Stoychev, A. Jakob, H. Lang and A. Synytska, *ACS Appl. Mater. Interfaces*, 2015, **7**, 21218-21225.
- 155. K. Kaviyarasu, E. Manikandan, J. Kennedy and M. Maaza, *RSC Adv.*, 2015, **5**, 82421-82428.
- 156. A. Sobhani-Nasab and M. Behpour, J. Mater. Sci.: Mater. Electron., 2016, 27, 1191-1196.
- M. Akbari, A. Aetemady, F. Firoozeh and M. Yaseliani, J. Mater. Sci.: Mater. Electron., 2017, 28, 10245-10249.
- 158. S. Vinay, H. Sumedha, G. Nagaraju, S. Harishkumar and N. Chandrasekhar, *Appl. Organomet. Chem.*, 2020, e5830.
- B. Rashmi, S. F. Harlapur, B. Avinash, C. Ravikumar, H. Nagaswarupa, M. A. Kumar, K. Gurushantha and M. Santosh, *Inorg. Chem. Commun.*, 2020, 111, 107580.

- D. Sarkar, C. K. Ghosh, S. Mukherjee and K. K. Chattopadhyay, ACS Appl. Mater. Interfaces, 2013, 5, 331-337.
- P. Das, S. Ray, A. Bhaumik, B. Banerjee and C. Mukhopadhyay, *RSC Adv.*, 2015, 5, 6323-6331.
- 162. Y. Y. Chen, S. H. Yu, Q. Z. Yao, S. Q. Fu and G. T. Zhou, J. Colloid Interface Sci., 2018, 510, 280-291.
- 163. M. Y. Li, Y. Q. Mao, S. K. Yang, T. T. Dai, H. Yang, F. Feng, T. Wu, M. Chen, G. Q. Xu and J. H. Wu, ACS omega, 2016, 1, 696-705.