Electronic Supplementary Information (ESI)

Molecular Quaterpyridine-based Metal Complexes for Small Molecules Activation: Water Splitting and CO₂ Reduction

Lingjing Chen,^{‡a} Gui Chen,^{‡a} Chi-Fai Leung,^b Claudio Cometto,^c Marc Robert^{*c, d} and Tai-Chu Lau^{*e}

^a Dongguan Cleaner Production Technology Center, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China

^b Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, P. R. China.

^c Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France. Email: robert@u-paris.fr.

^{*d*} Institut Universitaire de France (IUF), F-75005 Paris, France.

^e Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China. Email: Email: bhtclau@cityu.edu.hk

[‡] Both authors contributed equally.

Contents

Table S1 Summary of electrocatalytic reduction of CO ₂ catalysed by quaterpyridine-based catalysts and selected catalysts reported in	
the literatures.	3
Table S2 Summary of photocatalytic reduction of CO2 catalysed by quaterpyridine-based catalysts and selected catalysts reported in	
the literatures.	5

Table S1 Summary of electrocatalytic reduction of CO_2 catalysed by quaterpyridine-based catalysts and selected catalysts reported in the literatures.

Catalyst	Reaction conditions	Electrode	Applied potential (V)	Current density (mA cm ⁻²)	Products (selectivity)	Turnover number (vs. total amount of Cat.)	Turnover frequency (vs. total amount of Cat.) (s ⁻¹)	Faradaic efficiency	Reference
	MeCN, 0.1 M ⁿ Bu ₄ NPF ₆ , 0.2~0.4 mM of Coqpy	Glassy carbon	-1.70 vs. SCE	-	CO (80%)	20 (based on total amount of Cat.)	0.0056	80%	<i>J. Chem. Soc.,</i> <i>Dalton Trans.,</i> 1995, 1103- 1107. ¹
$[C_{0}(a_{DV})(H_{0})]^{2+}$	MeCN, 0.1 M ⁿ Bu ₄ NPF ₆ , 1 M phenol, 0.5 mM of Coqpy	Glassy carbon	-1.4 vs. SCE	-	CO (99%)	-	-	94%	J. Am. Chem. Soc. 2016, 138 , 9413-9416. ²
[Co(qpy)(H ₂ O) ₂] ²⁺	MeCN, 0.1 M ⁿ Bu ₄ NPF ₆ , 3 M phenol+10% H ₂ O, 0.5 mM of Coqpy	Glassy carbon	-1.1 vs. SCE	-	CO (96%)	17 (based on total amount of Cat.)	0.0016	94%	ACS Catal., 2018, 8 , 3411- 3417. ³
	MeCN, 0.1 M ⁿ Bu ₄ NPF ₆ , 0.1 M phenol, 0.5 mM of Coqpy	Glassy carbon	-1.6 vs. SCE	-	CO (77%)	-	-	72%	<i>Organometallics</i> 2019, 38 , 1280-1285. ⁴
[Co(qpy)] ²⁺ @MWCNTs	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 8.5 nmolcm ⁻² Coqpy	Carbon paper	-0.35 vs. RHE	0.94	CO (100%)	4700	0.59	100%	
	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 20.5 nmolcm ⁻² Coqpy	Carbon paper	-0.48 vs. RHE	6.3	CO (100%)	42960	3.4	100%	Angew Chem
	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 8.5 nmolcm ⁻² Coqpy	Carbon paper	-0.48 vs. RHE	10	CO (100%)	29360	5.9	100%	<i>Int. Ed.</i> 2018, 57 , 7769 –7773.
	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 8.5 nmolcm ⁻ ² Coqpy	Carbon paper	-0.53 vs. RHE	11.9	CO (100%)	35875	7.2	100%	
	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 8.5 nmolcm ⁻	Carbon paper	-0.58 vs. RHE	19.9	CO (99%)	59910	12.0	100%	

	² Coqpy								
Co-qPyH m-TiO2	H ₂ O, 0.1 M KHCO ₃ (pH 6.8), 29 nmolcm ⁻² Co-qPyH	FTO	-0.51 vs. RHE	1.2	CO (80%)	1002	0.14	63%	Nat. Commun., 2020, 11 , 3499. ⁶
CoPc/carbon [Co phthalocyanine]	Membrane flow reactor, 1 M KOH, 1 M phenol	Gas diffusion electrode (carbon paper)	-	150	>95%	129	0.215	>95%	<i>Science</i> , 2019, 365 , 367-369. ⁷
CoTPP-CNT [Co tetraphenyl porphyrin]	H ₂ O, 0.5 M KHCO ₃ , 170 nmolcm ⁻² CoTPP	Glassy carbon	-1.35 V vs. SCE	0.59	CO (>90%)	1118	0.069	83%	Angew. Chem. Int. Ed., 2017, 56 , 6468-6472. ⁸
CoPc/CNT (2.5%)	H ₂ O, 0.1 M KHCO ₃ (pH 6.8)	Glassy carbon	-0.63 V vs. RHE	~10.0	CO (92%)	162	2.7	92%	Nat. Commun.,
CoPc-CN/CNT (3.5%)	H ₂ O, 0.1 M KHCO ₃ (pH 6.8)	Glassy carbon	-0.63 V vs. RHE	~15.0	CO (98%)	-	4.1	98%	2017, 8 , 14675. ⁹
[Co(tpyH ₂ PhCl) ₂](PF ₆) ₂ [tpy: terpyridine]	DMF/H ₂ O (95 : 5), 0.1M ⁿ Bu ₄ NPF ₆ , 1 mM catalyst	Hg pool	-	0.17	CO (31%)	-	-	31%	<i>Chem. Sci.</i> , 2015, 6 , 2522-2531. ¹⁰
Cobalt macrocyclic aminopyridine	DMF, 0.1M ⁿ Bu ₄ NPF ₆ , 1.2 M TFE, 0.5 mM catalyst	Glassy carbon plate	-2.8 V vs. Fc	0.17	CO (98%)	6.2 (based on total amount of Cat.)	0.00086	98%	J. Am. Chem. Soc., 2016, 138 , 5765-5768. ¹¹
FeTPP-CNT [iron tetraphenyl porphyrin]	H ₂ O, 0.5 M KHCO ₃ (pH 7.3), 170 nmolcm ⁻² FeTPP	Glassy carbon	-1.35 V vs. SCE	1.9	CO (>90%)	-	0.069	97%	Angew. Chem. Int. Ed., 2017, 56 , 6468-6472. ⁸
$[Fe(qpy)(H_2O)_2]^{2+}$	MeCN, 0.1 M ⁿ Bu ₄ NPF ₆ , 1 M phenol	Glassy carbon plate	-1.4 vs. SCE	-	CO (100%)	-	-	37%	<i>J. Am. Chem.</i> <i>Soc.</i> 2016, 138 , 9413-9416. ²
CATpyr [iron porphyrin modified with OH groups]	H ₂ O, 0.5 M NaHCO ₃ (pH 7.3), 24 nmolcm ⁻² FeTPP	Carbon plate	-1.03 V vs. NHE	0.186	CO (96%)	432 (based on total amount of Cat.)	0.04	97%	J. Am. Chem. Soc., 2016, 138 , 2492-2495. ¹²
FeTPP	DMF, 0.1 M PhOH, 1mM FeTPP	Hg pool	-1.46 V vs. NHE	-	CO (100%)	-	-	100%	<i>J. Am. Chem.</i> <i>Soc.</i> , 2013, 135 , 9023-9031. ¹³
FeTDHPP [iron porphyrin modified with OH groups]	DMF, 2 M PhOH, 1mM FeTPP	Hg pool	-1.16 V vs. NHE	0.31	CO (95%)	-	-	95%	<i>Science</i> , 2012, 338 , 90-94. ¹⁴
FeP [iron porphyrin modified with ⁺ N(Me) ₃	H ₂ O, 0,1 M KCl (pH 6.7)	Glassy carbon	-0.86 V vs. NHE	0.05	CO (98%)	-	-	98%	Proc. Natl Acad. Sci.

groups]		crucible							USA, 2015, 112 , 6882-6886. ¹⁵
FeP [iron porphyrin modified with ⁺ N(Me) ₃ groups]	Flow cell, H ₂ O, 0,1 M KOH (pH 14)	Gas diffusion electrode (carbon paper)	-0.59 V vs. RHE	152	CO (98%)	-	-	98%	<i>Chem. Eur. J,</i> 2020, 26 , 3034-3038. ¹⁶
Fe-o-TMA [iron porphyrin modified with ⁺ N(Me) ₃ groups]	DMF, 0.1 M H ₂ O, 3 M PhOH, 0.5 mM FeTPP	Glassy carbon crucible	-0.96 V vs. NHE	0.05	CO (100%)	-	-	100%	<i>J. Am. Chem.</i> <i>Soc.</i> , 2016, 138 , 16639-16644. ¹⁷
NiPc-OMe-MDE/CNT	DMF, 0.5 KHCO ₃ , 0.03 mg cm ⁻² NiPc	Carbon fibre paper	-0.64 V vs. NHE	14.5	CO (100%)	-	2.9	100%	Nature Energy, 2020, DOI: 10.1038/s41560- 020-0667-9.
[Ni(HTIM)] ²⁺ [nickel cyclam]	H ₂ O, 0.1 M NaClO4, (pH 5), 0.05 mM [Ni(HTIM)] ²⁺	Hg pool	-0.96 V vs. NHE	-	CO (100%)	-	-	88%	<i>Energy Environ.</i> <i>Sci.</i> , 2012, 5, 9502-9510. ¹⁹
[Ni(tpy)] ²⁺	DMF/H ₂ O (95 : 5), 0.1M ⁿ Bu ₄ NPF ₆ , 2 mM [Ni(tpy)] ²⁺	Hg pool	-1.72 V vs. NHE	-	CO (100%)	-	-	18%	<i>Phys. Chem.</i> <i>Chem. Phys.</i> , 2014, 16 , 13635- 13644. ²⁰

Table S2 Summary of photocatalytic reduction of CO_2 catalysed by quaterpyridine-based catalysts and selected catalysts reported in the literatures.

Catalyst	Photosonsitizor	[Catalyst]/	TON of p ba	roducts (sele sed on cataly	ctivity%) /st	Ф	Reaction conditions	Reference
	I notoscusitizei	[Photosensitizer]	СО	H_2	нсоон	ΨC0		
	$[\mathbf{D}_{ref}(\mathbf{h}_{ref})]^{2+}$	50 µM / 0.2 mM	1879(97)	15(1)	48(2)	8.8%	0.1 M BIH in MeCN/TEOA (4:1 v/v),	
[Fe(qpy)(OH ₂) ₂] ²⁺	[Ku(opy) ₃] ²	5 µM / 0.2 mM	3844(85)	534(12)	118(3)	-	blue LED (centered at 460 nm), 3 h	J. Am. Chem. Soc. 2016, 138 , 9413-9416. ²
	Purpurin	50 µM / 0.02 mM	520(97)	0(0)	14(3)	1.1%	0.1 M BIH in DMF, blue	
		5 µM/0.02 mM	1365(92)	0(0)	115(8)	-	LED (460 nm), 11 h	
	mpg-C ₃ N ₄	20 µM / 8.0 mg	155(97)	<1	8(3)	4.2%	MeCN/TEOA (4:1, v/v), λ≥400 nm, 17 h	<i>J. Am. Chem.</i> Soc. 2018, 140 , 7437-7440. ²¹

	$(\mathbf{D} (1))^{12+}$	50 µM / 0.3 mM	497(98)	3(1)	5(1)	2.8%	0.1 M BIH in MeCN/TEOA (4:1 v/v),	J. Am. Chem.
$[Co(qpy)(H_2O)_2]^2$	$[\text{Ku}(\text{bpy})_3]^{2^+}$	5 µM / 0.3 mM	2660(98)	23(1)	35(1)	-	blue LED (centered at 460 nm) for 3 h	<i>Soc.</i> 2016, 138 , 9413-9416. ²
[Cu(qpy)] ²⁺	[Ru(bpy) ₃] ²⁺	1 μM / 2 mM	12400(97)	410(3)	0(0)	1.2%	TEOA (15% v/v) and H ₂ O (3% v/v) in 2.5 mL MeCN, white LED lamp, 3 h.	<i>ChemSusChem</i> 2017, 10 , 4009- 4013. ²²
Coqpy@mpg-C ₃ N ₄	Coqpy@mpg- C ₃ N ₄	$3 \ \mu M \ / 6 \ mg \ catalyst$	254 (97%)	8 (3%)	-	0.25%	0.05 M BIH and 0.03 M PhOH in 3 mL MeCN, 100 W Xenon lamp	<i>J. Am. Chem.</i> <i>Soc.</i> , 2020, 142 , 6188-6195. ²³
	Ru(phen) ₃ Cl ₂	50 µM/0.2 mM	829(96)	22(2.5%)	12(1.5%)	-	0.1 M BIH and 1 M PhOH MeCN, blue LED	
	Ru(phen) ₃ Cl ₂	50 μM/0.2 mM	8 (2%)	6 (1.5%)	386(96.5%)	2.6%	0.025 M BIH MeCN/TEA (4:1 v/v), blue LED	
BiqpyCo ₂	g-C ₃ N ₄	20 µM/2.5 mg	0(0%)	48(8.9%)	493(91.1%)	1.7%	0.05 M BIH MeCN/TEOA (4:1 v/v), Xe-Hg lamp	Nat. Catal., 2019, 2 , 801-
	Pheno [phenoxazine based organic sensitizer]	15 μM/0.4 mM	518(89.3%)	62(10.7%)	0(0%)	-	0.05 M BIH and 1 M PhOH MeCN, solar simulator	008
	$[\mathbf{D}_{\mathbf{u}}(\mathbf{n}\mathbf{h}_{\mathbf{c}\mathbf{n}})]^{2+}$	50 μM / 0.2 mM	2190(99)	27(1)	0(0)	0.8%	0.11 M BIH and 50% H ₂ O in MeCN, blue LED (centered at 460 nm), 68 h	<i>Chem.</i> <i>Commun.</i> , 2020, 56 , 6249-6252. ²⁵
$[re(qnpy)(n_2O)_2]^2$	[Ku(pnen) ₃] ²	5 µM / 0.2 mM	14095(98)	360(2)	0(0)	-		
[Fa(nhan) (C H OH)Cl] ⁺	$[\mathbf{D}_{11}(\mathbf{b}_{11})]^{1/2+1}$	30 µM / 0.67 mM	2567(85.4)	171(14.6)	0(0)	-		
	[Ku(Opy)3]	0.15 µM / 0.67 mM	33167(95.3)	1650(4.7)	0(0)	-	0.022 M BIH in 4 mL DMF/TEOA solution (v/v,	<i>Molecules,</i> 2019 24 1 12
$[Fe(nhen), 1^{2+}]$	$[R_{11}(hn_{12}), 1^{2+}]$	0.03 µM / 0.67 mM	35417(68)	16667(32)	0(0)	-	7:1), white LEDs ($\lambda \ge 420$ nm), 2 h.	2019, 24 , 1-12. 26
[re(phen)3]		3 µM / 0.67 mM	1642(90.3)	176(9.7)	0(0)	-		
[Fe(dqtpy)(H ₂ O)] ²⁺	Purpurin	50 μM / 0.05 mM	544(99.3)	4(0.7)	0(0)	0.12%	0.1 M BIH and 5% TFE in DMF, blue LED (460 nm), 15 h	Dalton Trans., 2019, 48 , 9596- 9602. ²⁷
Fe tetraphenyl porphyrin	Ir(ppy) ₃	2 μM / 0.2 mM	140(93)	11(7)	0	0.0013%	0.36 M TEA in MeCN, 150 W Xenon lamp ($\lambda >$ 420 nm), 55 h	<i>J. Am. Chem.</i> Soc., 2014, 136 , 16768-16771. ²⁸
	Ir(ppy) ₃	2 µM / 0.2 mM	367(78)	26(5)	$0(0) + (CH_4 79(17))$	-	0.05M TEA in MeCN, 150 W Xenon lamp (λ > 420 nm), 102 h	<i>Nature,</i> 2017, 548 , 74-77. ²⁹
Fe <i>-p</i> -1МА	Purpurin	2 µM / 0.2 mM	120(95)	6(5)	0(0)	-	0.1 M NaHCO ₃ , 0.05 M TEA, and 0.2 mM purpurin in MeCN/H ₂ O (1:9 v/v), λ	<i>ChemSusChem</i> , 2017, 10 , 4447-4450. ³⁰

							> 420 nm, 94 h	
	Phen2	10 µM / 1 mM	140(73)	23(12)	$ \begin{array}{c c} 0(0) \\ + (CH_4 \\ 29(15)) \end{array} $	-	0.1 M TEA and 0.1 M TFE in DMF, visible Light ($\lambda >$ 435 nm), 102 h	<i>J. Am. Chem.</i> <i>Soc.</i> , 2018, 140 , 17830-17834. ³¹
Fe(CO)₃bpy	[Ru(bpy) ₃] ²⁺	0.25 μmol / 25 μmol	173(51)	168(49)	0(0)	5.2%	Fe(CO) ₃ bpy 0.25 μmol, [Ru(bpy) ₃]Cl ₂ (25 μmol), ligand (1.25), 15 mL NMP/TEOA (5 : 1, v/v), visible light (400–700 nm), 5 h	<i>Catal. Sci.</i> <i>Technol.</i> , 2016, 6 , 3623-3630. ³²
CoZn cryptate	[Ru(phen) ₃] ²⁺	0.025 µM / 0.4 mM	65000(98)	1280(2)	0(0)	0.15%	0.3 M TEOA in	Angew. Chem. Int. Ed., 2018.
CoCo cryptate	[Ru(phen) ₃] ²⁺	0.025 µM / 0.4 mM	17000(98)	368(2)	0(0)	0.04%	H ₂ O/MeCN (v/v, 1:4), LED light (450 nm), 10 h	57 , 16480- 16485. ³³
[Ni(^{Pr} himia1)] ²⁺	In(march)	2 nM / 0.2 mM	98000(100)	0(0)	0(0)	0.01%	0.07 M TEA in MeCN,Xe	J. Am. Chem.
	Ir(ppy) ₃	0.2 µM / 0.2 mM	1500(100)	0(0)	0(0)	-	1.5 filter, 7 h	<i>Soc.</i> , 2013, 135 , 14413-14424. ³⁴
[Ni(bpet)(MeCN) ₂] ²⁺	[Ru(bpy) ₃] ²⁺	0.03 mM / 0.5 mM	713(99)	7(1)	0(0)	1.42%	0.1 M BIH in DMA/H ₂ O solution (4.0 mL, 9:1 v/v), 450 nm, 55 h	<i>J. Am. Chem.</i> <i>Soc.</i> , 2017, 139 , 6538-6541. ³⁵
$[Ni(bpet-py_2)(H_2O)_2]^{2+}$	[Ru(bpy) ₃] ²⁺	0.03 mM / 0.5 mM	120(99.7)	0.4(0.3)	0(0)	11.1%	5.0 mM Mg(ClO ₄) ₂ and 0.1 M BIH in DMA/H ₂ O solution (4.0 mL, 9:1 v/v), 450 nm, 4 h	J. Am. Chem. Soc., 2019, 141 , 20309-20317. ³⁶
[Cu(pyN2 ^{Me2})(HCO2)] ⁻	[Ru(phen) ₃] ²⁺	0.05 µM / 0.4 mM	9900(98)	200(2)	0(0)	-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>Chem. Eur. J.</i> , 2018, 24 , 4503-4508. ³⁷
[Mn(pyrox)(CO) ₃ Br]	5.0 μmol [Cu(CH ₃ CN) ₄]PF ₆ , 5.0 μmol bathocuproine, and 15.0 μmol xantphos	1 μM / 0.1 mM	1058(>99)	0(0)	0(0)	0.47%	0.1 M BIH in 10 mL MeCN/TEOA (5:1, v/v); Hg-lamp, 5 h.	ACS Catal., 2019, 9 , 2091- 2100. ³⁸
[Mn(4OMe)]	$[Cu_2(P_2bph)_2]^{2+}$	50 µM / 0.25 mM	1314 (CO+HCOOH)			57%	0.1 M BIH in 4 mL DMA-TEOA (4:1, v/v) solution, Hg lamp, 36 h	J. Am. Chem. Soc., 2018, 140 , 17241-17254. ³⁹

References

1. K.-M. Lam, K.-Y. Wong, S.-M. Yang and C.-M. Che, J. Chem. Soc., Dalton Trans., 1995, 1103-1107.

- 2. Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-Mallart, S.-M. Ng, C.-C. Ko, G. Liu, L. Chen, M. Robert and T.-C. Lau, J. Am. Chem. Soc., 2016, 138, 9413-9416.
- 3. C. Cometto, L. Chen, P.-K. Lo, Z. Guo, K.-C. Lau, E. Anxolabéhère-Mallart, C. Fave, T.-C. Lau and M. Robert, ACS Catal., 2018, 8, 3411-3417.
- 4. C. Cometto, L. Chen, E. Anxolabéhère-Mallart, C. Fave, T.-C. Lau and M. Robert, *Organometallics*, 2019, **38**, 1280-1285.
- 5. M. Wang, L. Chen, T. C. Lau and M. Robert, *Angew. Chem. Int. Ed.*, 2018, **57**, 7769-7773.
- 6. P. B. Pati, R. Wang, E. Boutin, S. Diring, S. Jobic, N. Barreau, F. Odobel and M. Robert, Nat. Commun., 2020, 11, 3499.
- 7. S. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert and C. P. Berlinguette, *Science*, 2019, **365**, 367-369.
- 8. X. M. Hu, M. H. Ronne, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, Angew. Chem. Int. Ed., 2017, 56, 6468-6472.
- 9. X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang and H. Wang, Nat. Commun., 2017, 8, 14675.
- 10. N. Elgrishi, M. B. Chambers and M. Fontecave, Chem. Sci., 2015, 6, 2522-2531.
- 11. A. Chapovetsky, T. H. Do, R. Haiges, M. K. Takase and S. C. Marinescu, J. Am. Chem. Soc., 2016, 138, 5765-5768.
- 12. A. Maurin and M. Robert, J. Am. Chem. Soc., 2016, 138, 2492-2495.
- 13. C. Costentin, S. Drouet, G. Passard, M. Robert and J. M. Saveant, J. Am. Chem. Soc., 2013, 135, 9023-9031.
- 14. C. Costentin, S. Drouet, M. Robert and J.-M. Savéant, *Science*, 2012, **338**, 90-94.
- 15. C. Costentin, M. Robert, J.-M. Savéant and A. Tatin, Proc. Natl Acad. Sci. USA, 2015, 112, 6882-6886.
- 16. K. Torbensen, C. Han, B. Boudy, N. von Wolff, C. Bertail, W. Braun and M. Robert, *Chem. Eur. J.*, 2020, **26**, 3034-3038.
- 17. I. Azcarate, C. Costentin, M. Robert and J.-M. Savéant, J. Am. Chem. Soc., 2016, 138, 16639-16644.
- 18. X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai and Y. Liang, *Nat. Energy*, 2020, DOI: 10.1038/s41560-020-0667-9.
- 19. J. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T. Muckerman and E. Fujita, *Energy Environ. Sci.*, 2012, 5, 9502-9510.
- 20. N. Elgrishi, M. B. Chambers, V. Artero and M. Fontecave, Phys. Chem. Chem. Phys., 2014, 16, 13635-13644.
- 21. C. Cometto, R. Kuriki, L. Chen, K. Maeda, T. C. Lau, O. Ishitani and M. Robert, J. Am. Chem. Soc., 2018, 140, 7437-7440.
- 22. Z. Guo, F. Yu, Y. Yang, C.-F. Leung, S.-M. Ng, C.-C. Ko, C. Cometto, T.-C. Lau and M. Robert, *ChemSusChem*, 2017, **10**, 4009-4013.
- 23. B. Ma, G. Chen, C. Fave, L. Chen, R. Kuriki, K. Maeda, O. Ishitani, T.-C. Lau, J. Bonin and M. Robert, J. Am. Chem. Soc., 2020, 142, 6188-6195.
- 24. Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W.-L. Man, S.-M. Yiu, K.-C. Lau, T.-C. Lau and M. Robert, Nat. Catal., 2019, 2, 801-808.
- 25. Y. Qin, L. Chen, G. Chen, Z. Guo, L. Wang, H. Fan, M. Robert and T. C. Lau, Chem. Commun., 2020, 56, 6249-6252.
- 26. Z.-C. Fu, C. Mi, Y. Sun, Z. Yang, Q.-Q. Xu and W.-F. Fu, *Molecules*, 2019, 24, 1878.
- 27. L. Chen, Y. Qin, G. Chen, M. Li, L. Cai, Y. Qiu, H. Fan, M. Robert and T. C. Lau, *Dalton Trans.*, 2019, 48, 9596-9602.
- 28. J. Bonin, M. Robert and M. Routier, J. Am. Chem. Soc., 2014, 136, 16768-16771.
- 29. H. Rao, L. C. Schmidt, J. Bonin and M. Robert, *Nature*, 2017, **548**, 74-77.
- 30. H. Rao, J. Bonin and M. Robert, ChemSusChem, 2017, 10, 4447-4450.
- 31. H. Rao, C. H. Lim, J. Bonin, G. M. Miyake and M. Robert, J. Am. Chem. Soc., 2018, 140, 17830-17834.
- 32. P. G. Alsabeh, A. Rosas-Hernandez, E. Barsch, H. Junge, R. Ludwig and M. Beller, Catal. Sci. Technol., 2016, 6, 3623-3630.
- 33. T. Ouyang, H.-J. Wang, H.-H. Huang, J.-W. Wang, S. Guo, W.-J. Liu, D.-C. Zhong and T.-B. Lu, Angew. Chem. Int. Ed., 2018, 57, 16480-16485.
- 34. V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang and C. J. Chang, J. Am. Chem. Soc., 2013, 135, 14413-14424.
- 35. D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka and T. Kojima, J. Am. Chem. Soc., 2017, 139, 6538-6541.
- 36. D. Hong, T. Kawanishi, Y. Tsukakoshi, H. Kotani, T. Ishizuka and T. Kojima, J. Am. Chem. Soc., 2019, 141, 20309-20317.
- 37. W.-J. Liu, H.-H. Huang, T. Ouyang, L. Jiang, D.-C. Zhong, W. Zhang and T.-B. Lu, Chem. Eur. J., 2018, 24, 4503-4508.
- 38. C. Steinlechner, A. F. Roesel, E. Oberem, A. Päpcke, N. Rockstroh, F. Gloaguen, S. Lochbrunner, R. Ludwig, A. Spannenberg, H. Junge, R. Francke and M. Beller, *ACS Catal.*, 2019, 9, 2091-2100.
- 39. H. Takeda, H. Kamiyama, K. Okamoto, M. Irimajiri, T. Mizutani, K. Koike, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2018, 140, 17241-17254.