Electronic Supplementary Material (ESI) for Chemical Society Reviews. Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2020

**Electronic Supplementary Information for** 

# Guest-occupiable space in the crystalline solid state: a simple ruleof-thumb for predicting occupancy

## Dewald P. van Heerden and Leonard J. Barbour\*

Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, South Africa. Email: ljb@sun.ac.za



## **Table of Contents**

| 1  | Group Additivity sets                      | 2  |
|----|--------------------------------------------|----|
| 2  | Guest Molecular volume                     | 3  |
| 3  | Molecular isodensity volumes               | 5  |
| 4  | Van der Waals radii                        | 6  |
| 5  | Software investigated parameter comparison | 8  |
| 6  | Refcode references                         | 8  |
| 7  | Outliers summary                           | 9  |
| 8  | Fractions summary                          | 13 |
| 9  | Predictions                                | 15 |
| 10 | Fractions for other solvents               | 16 |
| 11 | Interaction energies                       | 16 |
| 12 | Disorder test                              | 17 |
| 13 | Software comparison                        | 18 |

| 14 | References | ; | 20 |
|----|------------|---|----|
|----|------------|---|----|

### **1** Group Additivity sets

**Table S1** Comparison of functional group volumes. Estimates from Kitaigorodsky<sup>1</sup> and Cady<sup>2</sup> are spheres-and-caps derived, while those from other authors are derived from formula unit volumes; i.e., assuming no void space. Dashes indicate values that were not parameterized.

|       |                      | V <sub>FU</sub>      | (ų)a   |                    | V <sub>s&amp;c</sub> (Å | 3)b  |
|-------|----------------------|----------------------|--------|--------------------|-------------------------|------|
| Group | Hofmann <sup>3</sup> | lmmirzi &<br>Perini⁴ | Stein⁵ | Ammon <sup>6</sup> | Kitaigorodsky           | Cady |
| —Н    | 5.1                  | 6.9                  | 6.0    | 5.4                | 2.0                     | 3.1  |
| -F    | 11.2                 | 12.8                 | 12.9   | 13.5               | 9.6                     | 9.3  |
| –Cl   | 25.8                 | 26.7                 | -      | 27.8               | 19.9                    | 19.4 |
| -Br   | 32.7                 | 33.0                 | -      | 33.3               | 26.0                    | -    |
| >CH   | 19.0                 | 17.9                 | 19.4   | 21.5               | 11.1                    | 11.2 |
| >CH₂  | 24.0                 | 24.8                 | 25.4   | 24.4               | 17.1                    | 16.9 |
| –CH₃  | 29.1                 | 31.7                 | 31.3   | 32.2               | 23.5                    | 22.6 |
| –OH   | 16.5                 | -                    | 12.5   | 12.9               | -                       | -    |
| –NH₂  | 22.0                 | 21.0                 | 19.6   | 19.7               | 19.7                    | 16.6 |
| -NO2  | 34.6                 | 35.2°                | 35.9   | 35.6               | 23.0                    | 28.3 |

<sup>a</sup> Derived using equation 1 of the main text.

<sup>b</sup> Derived using equation 7 of the main text.

<sup>c</sup> The erroneous original value of 25.6 Å<sup>3</sup> was amended as per the recommendation of Cady.

**Table S2** Comparison of functional group displacement volumes for groups bonded to and including an aromatic carbon. All formula unitderived values were scaled by  $PC_{\rm K} = 7/_{10}$  to compare with spheres-and-caps derived volumes by Kitaigorodsky<sup>1</sup> and Cady.<sup>2</sup> Dashes indicate values that were not parameterized.

|                    |                      |                     | $PC_{\rm K} \times V_{\rm FU}$ (Å <sup>3</sup> ) |                    |                    | V <sub>s&amp;c</sub> (ų) |       |  |
|--------------------|----------------------|---------------------|--------------------------------------------------|--------------------|--------------------|--------------------------|-------|--|
| Group              | Hofmann <sup>3</sup> | Tarver <sup>a</sup> | Immirzi &<br>Perini⁴                             | Stein <sup>5</sup> | Ammon <sup>6</sup> | Kitaigorodsky            | Cady  |  |
| C <sub>a</sub> –H  | 13.27                | 13.81               | 14.42                                            | 13.71              | 12.49              | 14.7                     | 13.54 |  |
| $C_a$ – $CH_3$     | 30.09                | 30.19               | 31.78                                            | 30.4               | 31.2               | 31.9                     | 31.64 |  |
| C <sub>a</sub> –OH | 21.24                | 18.63               | -                                                | 17.25              | 17.74              | -                        | -     |  |
| $C_a - NH_2$       | 25.08                | 18.21               | 24.29                                            | 22.21              | 22.48              | 28.1                     | 25.71 |  |
| $C_a - NO_2$       | 33.92                | 34.53               | 34.23                                            | 33.58              | 33.62              | 31.4                     | 37.34 |  |

<sup>a</sup> Values from Tarver et al.<sup>7</sup> incorporate the carbon atom that the functional group is bonded to, preventing a direct comparison as in Table S1.

#### 2 Guest Molecular volume

In this work, the vdW surface was used to estimate  $V_{mol}$ . However, as Meyer pointed out, contours of electron density do not have the sharp clefts of the 'vdW surface' that result from the clockwork-like union of spheres, but are more rounded out or 'peanut necked.'<sup>17</sup> The shape of a molecule ultimately depends on its electron density distribution, which can be determined from diffraction experiments or taken as the complex square of its quantum-mechanical wavefunction representation,  $\psi^{2,18}$  Bader proposed the isodensity value of 0.014 e Å<sup>-3</sup> as a theoretical measure of molecular size, but later recommended the 0.007 e Å<sup>-3</sup> contour that encompasses 98% of the total electron density.<sup>19,20</sup> The  $\rho_{0.007}$  isosurface of the formula unit approximates its volume  $V_{FU}$ ;<sup>21,22</sup> it extends beyond the molecular surface and is a suitable contour for mapping the molecular surface electrostatic potential (MESP) relevant to the onset of noncovalent interactions.<sup>23,24</sup> In a preliminary study relating free space and impact sensitivity of energetic compounds, Politzer et al. used a contour value of 0.014 e Å<sup>-3</sup>, but later recommended the  $\rho_{0.020}$ isosurface as an estimate of V<sub>mol</sub>.<sup>25,26</sup> Bouhmaida and Ghermani investigated the suitability of electronic isosurfaces for estimating  $\rho_{crvst}$  and determined PC<sub>K</sub> values of 0.99, 0.85, 0.71 and 0.58 for isodensity thresholds of 0.007, 0.014, 0.027 and 0.054 e Å<sup>-3</sup>, respectively.<sup>27</sup> This underscores that a  $\rho_{0.007}$  isosurface is an estimate of  $V_{\rm FU}$ , while 0.027 e Å<sup>-3</sup> is a more appropriate threshold for estimating V<sub>mol</sub>. For an assessment of MESP methods for organic energetic materials, see for example Ghule et al.28



**Fig. S1** Different surface typologies of water. The semi-transparent (a, pink) vdW and (b, blue) 0.017 e Å<sup>-3</sup> isodensity surfaces are overlaid in (c) with the former shown as dots while a section through the molecular plane is shown for the latter. Water is shown in the ball-and-stick metaphor with oxygen and hydrogen atoms coloured red and white, respectively. In (d) the isodensity surface is overlaid with the space-fill representation of water. The PAS (green) is overlaid in (e) and shown along with the PTS (orange) in (f); the probe with radius 1.2 Å is shown as a black sphere. Smoothing of clefts present in the hard-sphere model is apparent in (d) and (e) as saddle areas.

The molecular volume of a solvent was estimated as the mean  $V_g$  determined for each unique guest molecule. Values obtained by MStudio, CCDC and Zeo++ using  $r_p = 0.0$  Å for a guest molecule located in the empty unit cell (from which the host and other guest molecules were omitted) are listed under "periodic" in Table S3. Molecules were kept in their crystallographic geometries. MStudio *in vacuo*  $V^{vdW}$  evaluations of force-field geometry optimised solvent molecules appear under "non-periodic" along with the volume enclosed by a 0.017 e Å<sup>-3</sup> contour of the electron density calculated at the DFT/D $\zeta$  level of theory (see §3). Values listed under "bulk" were calculated using the molecular weight of the solvent and its liquid density at 25 °C:<sup>29,30</sup>

$$V_{\rm mol}^{\rm bulk} = 0.9586 \frac{MW}{\rho_l}$$
 S1

A comparison of  $V_{mol}$  determined using the additivity methods of Hofmann and Ammon reflects the increased accuracy of the latter when the chemical environment is accounted for. However, in the interest of a robust application, an immutable set of element-specific  $r_{vdW}$  were employed. MStudio non-periodic  $V_g^{vdW}$  were employed as estimations of solvent  $V_{mol}$  as they are intermediate between the crystallographic-geometry spheres-and-caps values and the smoother electronic isodensity values.

The geometry of the water molecule was optimised and the electron density derived using DMol3<sup>31,32</sup> implemented in MStudio with the B3LYP density functional<sup>33</sup> and the DNP basis set (double numeric plus polarizing d- and p-functions on non-hydrogen and hydrogen atom, respectively) to a 3.3 Å cutoff. Threshold values for SCF convergence and change in energy, maximum force and maximum displacement were  $6.28 \times 10^{-4}$  and  $6.28 \times 10^{-3}$  kcal mol<sup>-1</sup>, 1.255 kcal mol<sup>-1</sup> Å<sup>-1</sup> and 0.005 Å, respectively. A DIIS (direct inversion in an iterative subspace, Pulay scheme) size of 6 was applied to speed up convergence. The MStudio default electronic isodensity value of 0.017 e Å<sup>-3</sup> (0.0025 e bohr<sup>-3</sup>) was employed.

**Table S3**Comparison of solvent  $V_{nvil}(k^3)$ . Bulk values were calculated using Eqn S1, while formula unit-derived values were scaled by  $AG_k$ =  $^{7}/_{10}$  to account for  $V_{void}$ . Periodicggvalues are for solvent molecules in their crystallographic geometries, whereas non-periodicgand 0.017 e Å<sup>-3</sup> Vvalues are for in vacuo force-field geometry optimised molecules.

| Salvant       | <sub>L</sub> bulk | PC <sub>K</sub> > | < V <sub>FU</sub> | Pe      | eriodic V <sup>vdV</sup> g | N       | Non-periodic          |                      |  |
|---------------|-------------------|-------------------|-------------------|---------|----------------------------|---------|-----------------------|----------------------|--|
| Solvent       | V mol             | Hofmann           | Ammon             | MStudio | CCDC                       | Zeo++   | $V_{\rm g}^{\rm vdW}$ | $V_{\rm g}^{ m  ho}$ |  |
| acetic acid   | 55.108            | 49.588            | 51.422            | 53.233  | 53.115                     | 53.219  | 55.889                | 58.588               |  |
| acetone       | 70.968            | 58.436            | 61.727            | 60.191  | 60.181                     | 60.636  | 64.640                | 68.403               |  |
| acetonitrile  | 50.086            | 38.346            | 43.948            | 43.510  | 43.481                     | 43.809  | 45.855                | 48.357               |  |
| benzene       | 85.429            | 79.59             | 82.908            | 78.662  | 79.276                     | 78.998  | 84.024                | 89.007               |  |
| chloroform    | 77.384            | 67.445            | 73.296            | 69.106  | 68.936                     | 68.606  | 70.461                | 79.389               |  |
| cyclohexane   | 104.244           | 100.926           | 97.789            | 91.865  | 93.078                     | 92.331  | 101.764               | 109.053              |  |
| dcm           | 61.373            | 52.941            | 55.89             | 54.855  | 54.738                     | 54.979  | 56.625                | 62.926               |  |
| diethyl ether | 99.541            | 82.369            | 88.038            | 81.096  | 80.938                     | 81.116  | 88.466                | 94.512               |  |
| dma           | 89.109            | 87.073            | 93.204            | 86.352  | 86.157                     | 87.572  | 93.438                | 99.265               |  |
| dmf           | 80.275            | 70.252            | 75.228            | 71.042  | 70.967                     | 72.079  | 76.755                | 81.394               |  |
| dmso          | 68.028            | 66.367            | 72.687*           | 66.350  | 66.231                     | 67.669  | 71.892                | 77.947               |  |
| dioxane       | 81.705            | 83.23             | 82.879            | 79.478  | 80.254                     | 80.345  | 85.134                | 90.681               |  |
| ethanol       | 55.949            | 48.727            | 48.626            | 48.031  | 47.943                     | 49.792  | 53.979                | 57.108               |  |
| ethyl acetate | 93.811            | 83.23             | 90.033            | 84.142  | 84.090                     | 84.387  | 90.492                | 95.957               |  |
| hexane        | 125.049           | 108.038           | 113.284           | 103.625 | 104.690                    | 103.110 | 113.067               | 121.342              |  |
| iso-propanol  | 73.77             | 65.548            | 69.133            | 63.609  | 63.570                     | 65.408  | 71.041                | 75.774               |  |
| methanol      | 38.812            | 31.906            | 31.562            | 32.748  | 32.710                     | 34.520  | 36.814                | 38.399               |  |
| pentane       | 110.447           | 91.217            | 96.22             | 87.416  | 87.534                     | 87.207  | 95.948                | 103.098              |  |
| thf           | 78.253            | 83.23             | 74.075            | 71.372  | 71.366                     | 71.831  | 78.114                | 82.934               |  |
| toluene       | 102.429           | 96.411            | 100.292           | 94.377  | 94.180                     | 94.431  | 100.591               | 106.793              |  |

\* The value for dmso was calculated as:  $2 \times \text{``CH}_3$  of  $\text{CH}_3-\text{S''} + \text{``SO}_2$  of sulfone'' - ''C=O not in a ring'' + ''Csp not in a ring''.

Given the small deviation of  $V_g^{\text{vdW}}$  from  $V_g^{\text{p}}$ , we opted to estimate the molecular volume of a guest as the volume of its readily attainable vdW surface.

#### 3 Molecular isodensity volumes

Geometries were optimised using the COMPASSII force field<sup>34</sup> implemented in the Forcite module of MStudio. Force field-assigned charges and atom-based summation for non-bond interactions with cubic spline truncation was employed with threshold values of 0.001 kcal mol<sup>-1</sup>, 0.5 kcal mol<sup>-1</sup> Å<sup>-1</sup> and 0.015 Å for the change in energy, maximum force and maximum displacement criteria, respectively. Single point energy evaluations were carried out with DMol3 implemented in MStudio using the PBE density functional<sup>35</sup> and the DND basis set (double numeric plus polarization d-functions on non-hydrogen atoms) with a SCF tolerance of 6.28 × 10<sup>-3</sup> kcal mol<sup>-1</sup>and an orbital cut-off of 3.3 Å.

### 4 Van der Waals radii

The conceptually simplest boundary of a molecule is that of the molecular surface resulting from a set of fused spheres of suitable radii centred at the position of atomic nuclei. It is the steepness of the repulsive term in the potential function for noncovalent interactions that is responsible for the success of the "hardness" of the hard-sphere model.<sup>8</sup> Following Bragg's<sup>9</sup> ansatz of considering crystals as 'an assemblage of spheres' – each with element-characteristic diameters – packed tightly together, and that of 'crystal radii' by Mack,<sup>10</sup> Pauling introduced the term 'van der Waals radius' ( $r_{vdW}$ ) to describe the distance midway between atoms in van der Waals contact.<sup>11</sup> For a comparison of sets of  $r_{vdW}$ , see for example Hu *et al.*<sup>12</sup> and Batsanov.<sup>13</sup>

See www.ccdc.cam.ac.uk/support-and-resources/ccdcresources/Elemental\_Radii.xlsx for  $r_{vdW}$  values implemented by the CCDC. Although  $r_{vdW}^{hydrogen}$  is listed as 1.09 Å,<sup>14</sup> the actual value is 1.20 Å. Radii not available in either Bondi<sup>15,16</sup> or Rowland and Taylor<sup>14</sup> have  $r_{vdW}$  = 2.00 Å. The –*r* argument was invoked for Zeo++ analyses to read a list of van der Waals radii consistent with that of CCDC. There was no convenient manner in which to universally implement a set of  $r_{vdW}$ ; however, discrepancies only occur for metallic elements usually concealed by a coordination sphere.

| Elemen     | ıt     |      | vdW ra | adius (Å) |        | Elemen     | t      |      | vdW ra | dius (Å) |        |
|------------|--------|------|--------|-----------|--------|------------|--------|------|--------|----------|--------|
| Name       | Symbol | CCDC | Zeo++  | MStudio   | PLATON | Name       | Symbol | CCDC | Zeo++  | MStudio  | PLATON |
| Aluminium  | AI     | 2    |        | 1.43      | 2.15   | Gold       | Au     |      | 1.0    | 66       |        |
| Americium  | Am     | 2    |        | 1.73      | 2.31   | Hafnium    | Hf     | :    | 2      | 1.59     | 2.37   |
| Antimony   | Sb     | 2    |        | 1.61      | 2.26   | Helium     | He     |      | 1.     | .4       |        |
| Argon      | Ar     |      | 1      | .88       |        | Holmium    | Но     | :    | 2      | 1.76     | 2.54   |
| Arsenic    | As     |      | 1      | .85       |        | Hydrogen   | н      |      | 1.     | .2       |        |
| Barium     | Ва     | 2    |        | 2.24      | 2.14   | Indium     | In     |      | 1.9    | 93       |        |
| Beryllium  | Ве     | 2    |        | 1.12      | 1.15   | lodine     | I      |      | 1.9    | 98       |        |
| Bismuth    | Bi     | 2    |        | 1.82      | 2.34   | Iridium    | Ir     | :    | 2      | 1.36     | 2.12   |
| Boron      | В      | 2    |        | 1.75      | 1.63   | Iron       | Fe     | :    | 2      | 1.26     | 2.14   |
| Bromine    | Br     |      | 1      | .85       |        | Krypton    | Kr     |      | 2.0    | 02       |        |
| Cadmium    | Cd     |      | 1      | .58       |        | Lanthanum  | La     | :    | 2      | 1.88     | 2.67   |
| Caesium    | Cs     | 2    |        | 2.72      | 2.47   | Lead       | Pb     |      | 2.0    | 02       |        |
| Calcium    | Ca     | 2    |        | 1.97      | 1.79   | Lithium    | Li     |      | 1.     | 82       |        |
| Carbon     | С      |      | 1      | 7         |        | Lutetium   | Lu     | :    | 2      | 1.73     | 2.52   |
| Cerium     | Ce     | 2    |        | 1.81      | 2.63   | Magnesium  | Mg     |      | 1.     | 73       |        |
| Chlorine   | CI     |      | 1      | .75       |        | Manganese  | Mn     | :    | 2      | 1.37     | 2.15   |
| Chromium   | Cr     | 2    |        | 1.29      | 2.15   | Mercury    | Hg     |      | 1.     | 55       |        |
| Cobalt     | Со     | 2    |        | 1.25      | 2.03   | Molybdenum | Mo     | :    | 2      | 1.4      | 2.27   |
| Copper     | Cu     |      | 1      | 4         |        | Neodymium  | Nd     | :    | 2      | 1.81     | 2.61   |
| Dysprosium | Dy     | 2    |        | 1.78      | 2.55   | Neon       | Ne     |      | 1.     | 54       |        |
| Erbium     | Er     | 2    |        | 1.76      | 2.53   | Neptunium  | Np     | :    | 2      | 1.55     | 2.35   |
| Europium   | Eu     | 2    |        | 2.08      | 2.79   | Nickel     | Ni     |      | 1.0    | 63       |        |
| Fluorine   | F      |      | 1      | .47       |        | Niobium    | Nb     | :    | 2      | 1.47     | 2.28   |
| Gadolinium | Gd     | 2    |        | 1.8       | 2.59   | Nitrogen   | Ν      |      | 1.     | 55       |        |
| Gallium    | Ga     |      | 1      | .87       |        | Osmium     | Os     | :    | 2      | 1.35     | 2.17   |
| Germanium  | Ge     | 2    |        | 1.39      | 1.97   | Oxygen     | 0      |      | 1.     | 52       |        |

 Table S4
 List of element-specific van der Waals radii employed by each software suite.

| Element      |        | vdW radius (Å) |       |         |        |  | Elemen     | t      | vdW radius (Å) |       |         |        |  |
|--------------|--------|----------------|-------|---------|--------|--|------------|--------|----------------|-------|---------|--------|--|
| Name         | Symbol | CCDC           | Zeo++ | MStudio | PLATON |  | Name       | Symbol | CCDC           | Zeo++ | MStudio | PLATON |  |
| Palladium    | Pd     |                | 1     | .63     |        |  | Strontium  | Sr     | 2              |       | 2.15    | 1.92   |  |
| Phosphorus   | Р      |                | 1     | L.8     |        |  | Sulphur    | S      |                | 1     | .8      |        |  |
| Platinum     | Pt     | 1.             | 72    | 1.75    | 1.72   |  | Tantalum   | Та     | 2              |       | 1.47    | 2.23   |  |
| Plutonium    | Pu     | 2              | 2     | 1.59    | 2.33   |  | Technetium | Тс     | 2              |       | 1.35    | 2.15   |  |
| Polonium     | Ро     | 1              | 2     | 1.64    | 2.48   |  | Tellurium  | Те     |                | 2.    | 06      |        |  |
| Potassium    | к      |                | 2     | .75     |        |  | Terbium    | Tb     | 2              |       | 1.77    | 2.56   |  |
| Praseodymium | Pr     | 1              | 2     | 1.82    | 2.62   |  | Thallium   | τI     |                | 1.    | 96      |        |  |
| Promethium   | Pm     | 1              | 2     | 1.83    | 2.6    |  | Thorium    | Th     | 2              |       | 1.96    | 2.59   |  |
| Protactinium | Ра     | 1              | 2     | 1.63    | 2.41   |  | Thulium    | Tm     | 2              |       | 1.75    | 2.52   |  |
| Radium       | Ra     | 1              | 2     | 2.35    | 2.7    |  | Tin        | Sn     |                | 2.    | 17      |        |  |
| Rhenium      | Re     | 2              | 2     | 1.37    | 2.15   |  | Titanium   | Ti     | 2              |       | 1.47    | 2.27   |  |
| Rhodium      | Rh     | :              | 2     | 1.34    | 2.25   |  | Tungsten   | W      | 2              |       | 1.41    | 2.17   |  |
| Rubidium     | Rb     | 2              | 2     | 2.5     | 2.27   |  | Uranium    | U      |                | 1.    | 86      |        |  |
| Ruthenium    | Ru     | :              | 2     | 1.34    | 2.3    |  | Vanadium   | V      | 2              |       | 1.35    | 2.13   |  |
| Samarium     | Sm     | :              | 2     | 1.8     | 2.6    |  | Xenon      | Xe     |                | 2.    | 16      |        |  |
| Scandium     | Sc     | :              | 2     | 1.64    | 2.24   |  | Ytterbium  | Yb     | 2              |       | 1.93    | 2.74   |  |
| Selenium     | Se     |                | 1     | 1.9     |        |  | Yttrium    | Y      | 2              |       | 1.82    | 2.58   |  |
| Silicon      | Si     |                | 2     | 2.1     |        |  | Zinc       | Zn     | 1.3            | 9     | 1.39    | 2.25   |  |
| Silver       | Ag     |                | 1     | .72     |        |  | Zirconium  | Zr     | 2              |       | 1.6     | 2.36   |  |
| Sodium       | Na     |                | 2     | .27     |        |  |            |        |                |       |         |        |  |

### 5 Software investigated parameter comparison

Table S5Influence of choice of grid spacing for MStudio and CCDC APIs and the number of Monte Carlo samplings employed by Zeo++ forthe integration of surface volume. Mean surface volumes and 99% confidence-level intervals were derived for 323 virtually porous pentanehost structures.

| Cridenseine | MSt                                                   | udio                                                  | СС                                     | CDC                                    | Zeo++                  |                                        |                                        |  |
|-------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------|----------------------------------------|----------------------------------------|--|
| (Å)         | <sup>MS</sup> PTV <sub>1.2</sub><br>(Å <sup>3</sup> ) | <sup>MS</sup> PAV <sub>1.2</sub><br>(Å <sup>3</sup> ) | <sup>C</sup> PTV <sub>1.2</sub><br>(ų) | <sup>C</sup> PAV <sub>1.2</sub><br>(ų) | Monte Carlo<br>samples | <sup>z</sup> PTV <sub>1.2</sub><br>(ų) | <sup>z</sup> PAV <sub>1.2</sub><br>(ų) |  |
| 0.1         | 48.36 ± 2.04                                          | 258.83 ± 7.46                                         | 48.53 ± 2.06                           | 219.73 ± 5.19                          | Г у 10 <sup>3</sup>    | 49 25 1 2 29                           | 152.00 + 4.62                          |  |
| 0.2         | 48.36 ± 2.04                                          | 258.83 ± 7.46                                         | 48.72 ± 2.09                           | 211.30 ± 4.94                          | 5 × 10-                | 48.25 ± 2.28                           | 153.90 ± 4.63                          |  |
| 0.3         | 48.36 ± 2.04                                          | 258.84 ± 7.47                                         | 48.92 ± 2.13                           | 202.77 ± 4.79                          | E v 104                | 49 22 1 2 21                           | 106 00 ± 4 72                          |  |
| 0.4         | 48.32 ± 2.04                                          | 258.80 ± 7.46                                         | 49.10 ± 2.17                           | 195.36 ± 4.68                          | 5 × 10                 | 48.33 ± 2.21                           | 190.90 ± 4.72                          |  |
| 0.5         | 48.37 ± 2.04                                          | 258.81 ± 7.47                                         | 49.33 ± 2.21                           | 186.74 ± 4.61                          | E × 10 <sup>5</sup>    | 10 22 + 2 10                           | <b>712 72 ± E 2E</b>                   |  |
| 0.6         | 48.46 ± 2.04                                          | 258.85 ± 7.46                                         | 49.50 ± 2.26                           | 179.57 ± 4.60                          | 2 × 10.                | 48.32 ± 2.19                           | 213.23 ± 3.35                          |  |
| 0.7         | 48.47 ± 2.05                                          | 258.85 ± 7.49                                         | 49.69 ± 2.32                           | 166.53 ± 4.50                          |                        |                                        |                                        |  |
| 0.8         | 48.43 ± 2.05                                          | 258.78 ± 7.46                                         | 49.89 ± 2.36                           | 162.86 ± 4.49                          |                        |                                        |                                        |  |

### 6 Refcode references

 Table S6
 References to CSD refcodes used in this work not cited in the main text.

| CSD refcode | Reference                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------|
| NOPSOA      | A. L. Llamas-Saiz, C. Foces-Foces, J. Elguero and W. Meutermans, Supramol. Chem., 1994, 4, 53-62           |
| PASHIB/GOG  | K. Kato, M. Sugahara, N. Tohnai, K. Sada and M. Miyata, Cryst. Growth Des., 2004, 4, 263–272               |
| TOTFAJ      | P. Fonte, F. H. Kohnke, M. F. Parisi, S. Menzer and D. J. Williams, Tetrahedron Lett., 1996, 37, 6205–6208 |
| NOJZUI      | D. Das, L. J. Barbour, Chem. Commun., 2008, 5110–5112                                                      |

### 7 Outliers summary

 Table S7
 Collection of PAV<sub>1.2</sub>. SD = standard deviation. Refined data, after omission of outliers (< Q1 – 1.5IQR or > Q3 + 1.5IQR), are shown in boldface.

|                | MStudio |        |        |       | CCDC  |        |        |       | Zeo++ |        |        |       | PLATON |        |        |       |
|----------------|---------|--------|--------|-------|-------|--------|--------|-------|-------|--------|--------|-------|--------|--------|--------|-------|
| Solvent        | Count   | Mean   | Median | SD    | Count | Mean   | Median | SD    | Count | Mean   | Median | SD    | Count  | Mean   | Median | SD    |
|                | 266     | 111.63 | 108.07 | 27.22 | 266   | 95.68  | 92.90  | 22.08 | 266   | 94.46  | 92.00  | 18.67 | 266    | 96.53  | 93.75  | 21.60 |
| acetic acid    | 256     | 109.07 | 107.79 | 18.09 | 256   | 93.65  | 92.70  | 13.37 | 255   | 92.68  | 91.48  | 11.99 | 257    | 94.67  | 93.00  | 13.32 |
|                | 1 516   | 162.59 | 150.54 | 49.80 | 1 516 | 135.29 | 127.19 | 37.44 | 1 516 | 128.64 | 122.35 | 31.62 | 1 516  | 135.88 | 128.00 | 36.75 |
| acetone        | 1 358   | 149.95 | 146.79 | 24.57 | 1 388 | 126.77 | 124.87 | 18.22 | 1 382 | 121.74 | 120.73 | 15.82 | 1 388  | 127.62 | 126.00 | 18.00 |
|                | 3 727   | 123.73 | 115.12 | 41.06 | 3 727 | 97.86  | 92.65  | 30.80 | 3 727 | 92.23  | 88.19  | 26.53 | 3 727  | 98.55  | 93.50  | 30.40 |
| acetomtrile    | 3 366   | 115.70 | 112.15 | 22.89 | 3 396 | 92.27  | 91.18  | 15.10 | 3 410 | 87.86  | 86.85  | 13.41 | 3 385  | 92.89  | 91.50  | 14.61 |
| bonzono        | 3 478   | 207.98 | 195.4  | 55.53 | 3 478 | 175.18 | 167.31 | 40.38 | 3 478 | 165.57 | 159.16 | 35.15 | 3 478  | 174.16 | 166.37 | 39.51 |
| benzene        | 3 128   | 196.03 | 191.46 | 31.22 | 3 143 | 166.99 | 164.98 | 20.57 | 3 159 | 159.32 | 157.44 | 17.99 | 3 147  | 166.20 | 164.25 | 20.14 |
| chloroform     | 3 863   | 175.58 | 165.36 | 50.86 | 3 863 | 150.89 | 143.95 | 41.63 | 3 863 | 145.10 | 139.31 | 36.92 | 3 863  | 151.43 | 144.50 | 41.20 |
| chloroform     | 3 475   | 165.48 | 162.39 | 22.82 | 3 515 | 143.51 | 142.06 | 16.47 | 3 493 | 138.79 | 137.65 | 14.28 | 3 493  | 143.91 | 142.50 | 15.86 |
| cyclohexane    | 158     | 267.61 | 242.91 | 91.33 | 158   | 227.25 | 205.94 | 80.27 | 158   | 212.89 | 192.89 | 73.70 | 158    | 224.73 | 202.75 | 78.80 |
| cyclonexane    | 139     | 240.28 | 231.75 | 43.26 | 137   | 200.81 | 201.91 | 29.97 | 140   | 192.41 | 190.32 | 30.25 | 137    | 199.86 | 198.00 | 29.55 |
| dcm            | 7 647   | 153.57 | 143.44 | 51.44 | 7 647 | 124.57 | 117.85 | 42.60 | 7 647 | 117.39 | 111.77 | 39.16 | 7 647  | 125.19 | 118.38 | 42.25 |
| dem            | 6 970   | 144.19 | 140.55 | 24.49 | 7 008 | 117.54 | 115.96 | 16.61 | 7 033 | 111.66 | 110.41 | 14.74 | 6 995  | 118.18 | 116.50 | 16.18 |
| diethyl ether  | 1 266   | 241.31 | 226.08 | 77.30 | 1 266 | 199.05 | 187.52 | 62.77 | 1 266 | 185.15 | 176.46 | 55.26 | 1 266  | 199.43 | 188.50 | 62.00 |
| aletingi ether | 1 105   | 223.52 | 219.96 | 36.98 | 1 109 | 185.39 | 183.24 | 25.66 | 1 113 | 174.58 | 174.15 | 22.46 | 1 108  | 186.06 | 185.00 | 25.30 |
| dma            | 168     | 197.13 | 187.28 | 41.64 | 168   | 174.85 | 170.58 | 33.39 | 168   | 170.44 | 167.58 | 30.95 | 168    | 174.89 | 171.25 | 32.37 |
|                | 158     | 192.82 | 184.6  | 32.86 | 157   | 170.43 | 167.1  | 21.76 | 157   | 165.89 | 165.39 | 18.28 | 157    | 170.32 | 169.50 | 20.58 |
| dmf            | 2 440   | 161.48 | 153.18 | 42.46 | 2 440 | 142.70 | 136.89 | 35.89 | 2 440 | 139.08 | 133.88 | 32.31 | 2 440  | 143.04 | 137.00 | 35.37 |
|                | 2 241   | 153.46 | 151.3  | 20.90 | 2 261 | 136.48 | 135.26 | 16.13 | 2 262 | 133.71 | 132.57 | 14.69 | 2 258  | 136.85 | 135.50 | 15.90 |
| dmso           | 1 189   | 138.48 | 134.42 | 26.03 | 1 189 | 122.52 | 119.79 | 20.56 | 1 189 | 121.22 | 119.09 | 18.89 | 1 189  | 123.20 | 120.25 | 20.28 |
|                | 1 127   | 134.66 | 133.09 | 17.28 | 1 143 | 120.19 | 119.39 | 14.04 | 1 145 | 119.31 | 118.71 | 12.8  | 1 139  | 120.65 | 119.50 | 13.36 |
| dioxane        | 430     | 172.38 | 161.12 | 61.18 | 430   | 151.11 | 145.92 | 42.20 | 430   | 146.76 | 142.71 | 34.58 | 430    | 149.51 | 143.58 | 42.19 |
|                | 404     | 162.84 | 160.21 | 25.85 | 412   | 145.86 | 145.29 | 19.97 | 414   | 142.85 | 141.88 | 17.82 | 412    | 144.25 | 143.00 | 19.42 |
| ethanol        | 1 214   | 131.52 | 119.97 | 62.00 | 1 214 | 105.93 | 97.89  | 55.25 | 1 214 | 101.04 | 94.24  | 53.48 | 1 214  | 106.67 | 99.00  | 55.44 |
|                | 1 105   | 120.97 | 117.5  | 23.15 | 1 118 | 98.10  | 96.44  | 16.84 | 1 116 | 94.07  | 93.08  | 14.75 | 1 117  | 98.97  | 97.50  | 16.53 |
| ethyl acetate  | 482     | 211.68 | 204.54 | 47.83 | 482   | 179.69 | 176.11 | 35.31 | 482   | 172.18 | 168.10 | 30.48 | 482    | 180.33 | 176.00 | 34.37 |
|                | 445     | 204.27 | 202.57 | 29.24 | 449   | 174.97 | 174.33 | 21.57 | 448   | 168.3  | 166.63 | 18.47 | 451    | 176.16 | 175.00 | 21.68 |
| hexane         | 1 096   | 334.31 | 308.26 | 92.98 | 1 096 | 266.93 | 251.81 | 62.02 | 1 096 | 245.85 | 233.63 | 52.24 | 1 096  | 264.00 | 249.00 | 61.29 |
|                | 954     | 310.94 | 301.05 | 59.54 | 954   | 249.73 | 246.35 | 36.49 | 959   | 231.9  | 230.34 | 30.87 | 954    | 246.87 | 243.00 | 35.63 |
| iso-propanol   | 175     | 164.25 | 155.82 | 37.95 | 175   | 136.55 | 131.48 | 23.39 | 175   | 131.98 | 128.33 | 21.15 | 175    | 137.24 | 133.00 | 22.89 |
|                | 160     | 155.98 | 154.61 | 23.09 | 163   | 132.64 | 130.38 | 17.61 | 164   | 128.8  | 127.43 | 16.02 | 164    | 133.64 | 131.50 | 17.16 |
| methanol       | 4 499   | 89.32  | 80.65  | 37.41 | 4 499 | 66.66  | 61.80  | 29.01 | 4 499 | 62.73  | 58.82  | 25.42 | 4 499  | 67.44  | 62.50  | 28.43 |
|                | 2 725   | 86.71  | 83.52  | 18.34 | 2 746 | 67.39  | 65.61  | 11.24 | 2 746 | 64.02  | 62.90  | 9.55  | 2 743  | 68.03  | 66.25  | 11.16 |
| pentane        | 323     | 278.14 | 260.49 | 96.17 | 323   | 229.07 | 214.47 | 85.19 | 323   | 211.// | 199.16 | //.66 | 323    | 228.80 | 214.42 | 84.41 |
|                | 266     | 253.33 | 246.69 | 38.45 | 269   | 208.7  | 207.52 | 27.17 | 269   | 194.65 | 191.76 | 24.33 | 269    | 208.65 | 207.50 | 26.52 |
| thf            | 2 410   | 184.55 | 108.83 | 00.92 | 2 410 | 15/.5/ | 145.38 | 50.// | 2 410 | 149.67 | 140.15 | 51.03 | 2 410  | 157.65 | 146.50 | 56.05 |
|                | 2 126   | 109.64 | 105.79 | 25.50 | 2 135 | 145.54 | 143.66 | 17.12 | 2 145 | 100.40 | 138.13 | 14.95 | 2 134  | 145.64 | 144.00 | 10.00 |
| toluene        | 2 446   | 244.68 | 230.48 | o7.89 | 2 446 | 209.92 | 200.30 | 57.37 | 2 446 | 199.48 | 190./1 | 52.05 | 2 446  | 210.24 | 200.50 | 56.89 |
|                | 2 198   | 230.51 | 220.28 | 31.29 | 2 100 | 198.30 | 197.15 | 20.65 | 2 10/ | 199.22 | 188.46 | 18.18 | Z 193  | 198.88 | 191.20 | 20.73 |



Fig. S2 Comparison of probe-surface volumes obtained using various software packages employing a 1.2 Å probe radius for 20 common solvents.



Fig. S2 continued.



Fig. S2 continued.

### 8 Fractions summary



Fig. S3 Comparison of fraction of PAV occupied for 20 common solvents using MStudio (green), CCDC (orange), Zeo++ (pink) and PLATON (blue).



Fig. S3 continued.

### 9 Predictions



**Fig. S4** Ratio of the estimated and observed number of guest molecules per unit cell employing various  $r_p$  in MStudio (green), CCDC (orange), Zeo++ (pink) and PLATON (blue). Error bars indicate the RMSE.



Fig. S5 RMSE on the  $N_{g}^{sos}$  ratio determined using the MStudio and CCDC APIs for different probe radii.

### **10** Fractions for other solvents



**Fig. S6** CCDC-derived  $\theta$  values with 99% confidence-level intervals as a function of  $V_g$  for eleven solvents with less than 100 statistically significant crystal structures after application of the filters mentioned in the main text. Markers are coloured loosely according to class of compound: hydrocarbons, cyan; alcohols, lime; chlorinated, magenta; carbonyl-containing, yellow.

### **11** Interaction energies

Hydrogen atom positions were optimised using the COMPASSII force field employing force fieldassigned charges and Ewald summation for non-bond interactions. Only crystal structures with COMPASSII atom types for each atom were evaluated. Threshold values were the same as before (see §3). Single point energy evaluations were carried out with CASTEP<sup>36</sup> implemented in MStudio using the PBE density functional in combination with Grimme's DFT-D dispersion correction.<sup>37</sup> Onthe-fly generated Vanderbilt-type ultrasoft pseudopotentials in combination with the Koelling-Harmon scalar-relativistic approach and a plane-wave expansion to an energy cut-off of  $1.32 \times 10^4$ kcal mol<sup>-1</sup>. Integration in the reciprocal lattice was performed using a Monkhorst-Pack grid with a  $0.04 \text{ Å}^{-1}$  k-point separation and self-consistent field convergence was set to  $2.3 \times 10^{-5}$  kcal mol<sup>-1</sup>. A 50% admixture of the charge density was applied in conjunction with a DIIS (direct inversion in an iterative subspace, Pulay scheme) size of 20 to speed up convergence.

#### **12 Disorder test**

**Table S8** Number of crystal structures from a survey of the CSD for disordered solvates. Useable structures contained no unbound atoms, while only structures with two unique chemical units and "solvate" or "clathrate" in the chemical name were evaluated. RMSE are given for crystal structures in which solvent molecules were identified.

| Columnt       | No. of crystal | Useeble | Evolusted | Guest      | RMSE <sup>raw</sup> (molc UC <sup>-1</sup> ) |        |        |        |  |  |
|---------------|----------------|---------|-----------|------------|----------------------------------------------|--------|--------|--------|--|--|
| Solvent       | structures     | Useable | Evaluated | identified | MStudio                                      | CCDC   | Zeo++  | PLATON |  |  |
| acetone       | 3 583          | 644     | 200       | 73         | 1.11                                         | 1.19   | 1.07   | 1.25   |  |  |
| acetonitrile  | 13 195         | 1 630   | 357       | 140        | 1.68                                         | 1.99   | 1.97   | 1.96   |  |  |
| benzene       | 4 592          | 706     | 311       | 191        | 1.00                                         | 1.07   | 0.97   | 1.12   |  |  |
| chloroform    | 7 175          | 995     | 435       | 190        | 1.18                                         | 1.26   | 1.14   | 1.31   |  |  |
| dcm           | 18 880         | 3078    | 1 240     | 389        | 0.88                                         | 0.97   | 0.85   | 1.06   |  |  |
| diethyl ether | 5 903          | 945     | 310       | 72         | 0.90                                         | 0.97   | 0.89   | 0.95   |  |  |
| dmf           | 7 955          | 2 242   | 570       | 105        | 1.83                                         | 2.00   | 1.89   | 2.03   |  |  |
| ethanol       | 4 970          | 729     | 250       | 68         | 0.67                                         | 0.70   | 0.64   | 0.76   |  |  |
| hexane        | 4 070          | 791     | 437       | 113        | 0.65                                         | 0.70   | 0.62   | 0.77   |  |  |
| methanol      | 12 767         | 1 909   | 557       | 199        | 0.99                                         | 1.13   | 1.17   | 1.11   |  |  |
| thf           | 12 479         | 1 826   | 618       | 183        | 1.41                                         | 1.53   | 1.39   | 1.61   |  |  |
| toluene       | 9 621          | 1 874   | 1 017     | 230        | 1.23                                         | 1.39   | 1.42   | 1.38   |  |  |
|               | 105 190        | 17 369  | 6 302     | 1 953      | (1.13)                                       | (1.24) | (1.17) | (1.28) |  |  |



**Fig. S7** Prediction of the number of guest molecules per unit cell in disorder-flagged crystal structures employing CCDC-derived fractions of  $PAV_{1.2}$  occupied. Surfaces indicate one standard deviation from the dashed line-of-estimation and the number of structures before (Raw, black markers) and after (Refined, coloured markers) omission of crystal structures with  $PTV_{1.2,complex} > 50 Å^3 UC^{-1}$ .



**Fig. S8** Prediction of the number of guest molecules per unit cell in disorder-flagged crystal structures employing PLATON-derived fractions of PAV<sub>1.2</sub> occupied. Surfaces indicate one standard deviation from the dashed line-of-estimation and the number of structures before (Raw, black markers) and after (Refined, coloured markers) omission of crystal structures with  $PTV_{1.2,complex} > 50 Å^3 UC^{-1}$ .

#### 13 Software comparison

 Table S9
 Comparison of PAV<sub>1.2</sub> (Å<sup>3</sup> UC<sup>-1</sup>) generated employing different software suites.

| Refcode | Guest            | V <sub>mol</sub> | N <sub>guest</sub> | $PAV_{1,2a}^{est}$ | MStudio | CCDC   | Zeo++ <sup>b</sup> | PLATON | X-Seed/MSRoll <sup>c</sup> | Olex2 |
|---------|------------------|------------------|--------------------|--------------------|---------|--------|--------------------|--------|----------------------------|-------|
| NOJZOC  | methanol         | 36.814           | 2                  | 134.78             | 212.7   | 155.41 | 157.56             | 152    | 157.04                     | 164.4 |
| NOJZUI  | acetonitrile     | 45.855           | 8                  | 738.11             | 905.88  | 723.12 | 629.21             | 688    | 756.38                     | 696   |
| COZWAQ  | dcm              | 56.625           | 4                  | 470.21             | 735.69  | 506.7  | 494.49             | 514    | -                          | 528.2 |
| COZWEU  | def <sup>d</sup> | 110.659          | 2                  | -                  | 421.46  | 394.44 | 410.94             | 399    | -                          | 411.8 |
| COZWIY  | dma              | 93.438           | 4                  | 681.66             | 869.13  | 721.06 | 584.05             | 728    | -                          | 789   |
| COZWOE  | dmf              | 76.755           | 2                  | 272.96             | 352.47  | 325.44 | 339.12             | 329    | -                          | 343.2 |
| COZWUK  | dmso             | 71.892           | 2                  | 240.36             | 327.32  | 280.41 | 299.69             | 289    | 314.83                     | 304.9 |
| COZXAR  | thf              | 78.114           | 4                  | 582.18             | 804.98  | 607.62 | 563.35             | 628    | -                          | 660.6 |

<sup>a</sup> Calculated as:  $V_{mol} \div \theta \times N_g$  employing CCDC-derived  $\theta$  values for methanol (0.55), acetonitrile (0.50), dcm (0.48), dma (0.55), dmf (0.56), dmso (0.60) and thf (0.54).

<sup>b</sup> Values in boldface and lightface indicate accessible and non-accessible probe-occupiable volume, respectively.

<sup>c</sup> Only cases that successfully trap the probe yield sensible surface volumes.

<sup>d</sup> N,N-diethylformamide

The over- and underestimation of PAV by MStudio and Zeo++, respectively, is apparent for most cases in Table S9.

**Table S10** Comparison of  $PTV_{1,2}$  (Å<sup>3</sup> UC<sup>-1</sup>) generated employing different software suites.

| Refcode | Guest            | V <sub>mol</sub> | Ng | MStudio | CCDC   | Zeo++ <sup>a</sup> | PLATON | X-Seed/MSRoll <sup>b</sup> |
|---------|------------------|------------------|----|---------|--------|--------------------|--------|----------------------------|
| NOJZOC  | methanol         | 36.814           | 2  | 18.05   | 18.06  | 20.08              | 18.1   | 18.04                      |
| NOJZUI  | acetonitrile     | 45.855           | 8  | 134.51  | 145.17 | 142.35             | 134    | 134.47                     |
| COZWAQ  | dcm              | 56.625           | 4  | 87.37   | 88.03  | 92.81              | 87.6   | 87.41                      |
| COZWEU  | def <sup>c</sup> | 110.659          | 2  | 110.11  | 111.96 | 115.28             | 110.4  | -                          |
| COZWIY  | dma              | 93.438           | 4  | 117.94  | 114.31 | 119.38             | 117.8  | -                          |
| COZWOE  | dmf              | 76.755           | 2  | 70.24   | 68.29  | 74.478             | 70.2   | -                          |
| COZWUK  | dmso             | 71.892           | 2  | 53.89   | 51.98  | 57.29              | 53.9   | 53.93                      |
| COZXAR  | thf              | 78.114           | 4  | 108.23  | 107.82 | 118.83             | 84.4   | 108.04                     |

<sup>a</sup> Values in boldface and lightface indicate accessible (channel) and non-accessible (pocket) "probe-occupiable" volume, respectively.

<sup>b</sup> Only cases that successfully trap the probe yield sensible surface volumes; i.e., PTS delineated as pockets by Zeo++.

<sup>c</sup> N,N–diethylformamide

**Table S11** Comparison of surface volumes ( $Å^3$  UC<sup>-1</sup>) generated by different software suites employing  $r_p = 1.2$  Å.

| Refcode | Guest            | $V_{ m mol}$ | Ng | RPluto | ATOMS    | CrystalExplorer | Vp     |
|---------|------------------|--------------|----|--------|----------|-----------------|--------|
| NOJZOC  | methanol         | 36.814       | 2  | 52.50  | 19.88439 | 363.49          | 34.42  |
| NOJZUI  | acetonitrile     | 45.855       | 8  | 340.25 | 246.5558 | 1650.79         | 193.84 |
| COZWAQ  | dcm              | 56.625       | 4  | 160.29 | 129.2669 | 1069.02         | 135.38 |
| COZWEU  | def <sup>c</sup> | 110.659      | 2  | 175.92 | 125.6539 | 440.23          | 159.50 |
| COZWIY  | dma              | 93.438       | 4  | 178.55 | 175.0481 | 1112.66         | 182.92 |
| COZWOE  | dmf              | 76.755       | 2  | 97.50  | 83.22811 | 374.88          | 111.72 |
| COZWUK  | dmso             | 71.892       | 2  | 75.19  | 70.49202 | 359.21          | 82.83  |
| COZXAR  | thf              | 78.114       | 4  | 202.26 | 174.3585 | 1117.39         | 161.70 |

X-Seed allows the user to interactively generate a non-periodic \*.pdb file that can be parsed to MSRoll for surface analysis. If there are no pockets capable of confining the probe then only the exterior surface of the host structure will be mapped. RPluto and ATOMS employ an algorithm first proposed by Gavezzotti; to avoid the cumbersome geometric spheres-and-caps method of calculating the total volume of spheres less the volume of intersecting gaps,<sup>1</sup> he proposed enclosing the system in a box of known volume and the molecular volume is then readily determined using the ratio of grid points that lies within the constituting atoms'  $r_{vdW}$ :<sup>38</sup>

$$V_{\rm mol} = V_{\rm box} \frac{N_{\rm occupied}}{N_{\rm box}}$$
 S2

Whereas the "Crystal Voids" calculation of CrystalExplorer uses a 0.0134 e Å<sup>-3</sup> promolecule isodensity value, *ab initio* determined  $V^{p}$  values are volumes circumscribed by the 0.000675 e Å<sup>-3</sup> isosurface. Only for the determination of  $V^{p}$  were hydrogen atom positions optimised using CASTEP implemented in MStudio using the PBE density functional in combination with Grimme's DFT-D dispersion correction. On-the-fly generated Vanderbilt-type ultrasoft pseudopotentials in combination with the Koelling-Harmon scalar-relativistic approach and a plane-wave expansion to an energy cut-off of  $1.13 \times 10^4$  kcal mol<sup>-1</sup>. Integration in the reciprocal lattice was performed using a Monkhorst-Pack grid with a 0.05 Å<sup>-1</sup> k-point separation and self-consistent field convergence was set to  $4.61 \times 10^{-5}$  kcal mol<sup>-1</sup>. Convergence tolerances for geometry optimization using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm<sup>39</sup> were set to  $4.61 \times 10^{-4}$  kcal mol<sup>-1</sup> atom<sup>-1</sup>, 1.15 kcal mol<sup>-1</sup> Å<sup>-1</sup> and  $2.0 \times 10^{-3}$  Å on energy, maximum force and maximum displacement, respectively.

### **14 References**

- 1 A. I. Kitaigorodsky, *Molecular Crystals and Molecules*, Academic Press, New York, NY, 1973.
- 2 H. H. Cady, Estimation of the Density of Organic Explosives from their Structural Formulas, Los Alamos, New Mexico, 1975.
- 3 D. W. M. Hofmann, Acta Crystallogr., 2002, **B58**, 489–493.
- 4 A. Immirzi and B. Perini, Acta Crystallogr., 1977, A33, 216–218.
- 5 J. R. Stein, *Prediction of Crystal Densities of Organic Explosives by Group Additivity*, Los Alamos, New Mexico, 1981.
- 6 H. L. Ammon, Propellants, Explos. Pyrotech., 2008, 33, 92–102.
- 7 C. M. Tarver, C. L. Coon and J. M. Guimont, Density estimation for new solid and liquid explosives, 1977.
- 8 F. M. Richards, *Methods Enzymol.*, 1985, **115**, 440–464.
- 9 W. L. Bragg, Philos. Mag., 1920, 40, 169–189.
- 10 E. Mack Jr., J. Am. Chem. Soc., 1932, 54, 2141–2165.
- 11 L. Pauling, *Nature of the Chemical Bond*, Cornell University Press, Ithaca, NY, Second., 1948.
- 12 S.-Z. Hu, Z.-H. Zhou, Z.-X. Xie and B. E. Robertson, Zeitschrift fuer Krist. Cryst. Mater., 2014, 229, 517–523.
- 13 S. S. Batsanov, Inorg. Mater. (Translation Neorg. Mater., 2001, 37, 871–885.
- 14 R. S. Rowland and R. Taylor, *J. Phys. Chem.*, 1996, **100**, 7384–7391.
- 15 A. Bondi, J. Phys. Chem., 1964, **68**, 441–451.
- 16 A. Bondi, J. Phys. Chem., 1966, **70**, 3006–3007.
- 17 A. Y. Meyer, J. Comput. Chem., 1988, 9, 18–24.
- 18 P. L. Warburton, J. L. Wang and P. G. Mezey, J. Chem. Theory Comput., 2008, 4, 1627–1636.
- 19 R. F. W. Bader, W. H. Henneker and P. E. Cade, J. Chem. Phys., 1967, 46, 3341–3363.
- 20 R. F. W. Bader, M. T. Carroll, J. R. Cheeseman and C. Chang, J. Am. Chem. Soc., 1987, 109, 7968–7979.
- 21 J. S. Murray and P. Politzer, J. Mol. Struct. THEOCHEM, 1998, **425**, 107–114.
- 22 P. Politzer and J. S. Murray, *Struct. Chem.*, 2016, **27**, 401–408.
- 23 J. S. Murray and P. Politzer, *Croat. Chem. Acta*, 2009, **82**, 267–275.
- 24 P. Politzer and J. S. Murray, *Theor. Chem. Acc.*, 2002, **108**, 134–142.
- 25 M. Pospisil, P. Vavra, M. C. Concha, J. S. Murray and P. Politzer, J. Mol. Model., 2010, 16, 895–901.
- 26 M. Pospisil, P. Vavra, M. C. Concha, J. S. Murray and P. Politzer, J. Mol. Model., 2011, 17, 2569–2574.
- 27 N. Bouhmaida and N. E. Ghermani, J. Chem. Phys., 2005, **122**, 114101.
- 28 A. Nirwan, A. Devi and V. D. Ghule, J. Mol. Model., 2018, 24, 166.
- 29 C. E. Webster, R. S. Drago and M. C. Zerner, J. Am. Chem. Soc., 1998, **120**, 5509–5516.
- 30 D. R. Lide, Ed., Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 88th edn., 2008.
- 31 B. Delley, J. Chem. Phys., 1990, **92**, 508–517.
- 32 B. Delley, J. Chem. Phys., 2000, **113**, 7756–7764.
- 33 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
- H. Sun, Z. Jin, C. Yang, R. L. C. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller and S. M. Todd, J. Mol. Model., 2016, 22, 47.
- 35 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 36 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, *Zeitschrift fuer Krist.*, 2005, **220**, 567– 570.
- 37 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
- 38 J. D. Dunitz, G. Filippini and A. Gavezzotti, *Tetrahedron*, 2000, **56**, 6595–6601.
- 39 B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, J. Comput. Phys., 1997, 131, 233–240.