Supporting Information

D- π -A type triphenylamine dye covalent functionalized g-C₃N₄ for highly efficient photocatalytic hydrogen evolution

Chao Zhang,^{†a} Jiandong Liu,^{†a} Xingliang Liu^{*a} and Shiai Xu^{*a,b}

a. School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China. E-mail: liux11219@163.com

b. Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. E-mail: saxu@ecust.edu.cn † These authors contributed equally to this work.

Scheme S1 Dyes structure of TC1 and TC2

Scheme S2 Synthesis of g-C₃N₄ NSs/TC2(C₈₂H₄₂N₅₀O₆)

Fig. S1 Typical TEM images of as-prepared sample and elemental mapping (C (green), N (cyan), O (red)) (a) g-

Fig. S2 High-resolution C 1s spectra, N 1s spectra and O 1s spectra of XPS spectra for g-C₃N₄ NSs+TC2.

Fig. S3 Wavelength-dependent AQY and DRS spectrum of $g-C_3N_4$ NSs, $g-C_3N_4$ NSs+TC1s and $g-C_3N_4$ NSs+TC2 in AA under λ =420nm.

 $\label{eq:Fig.S4} \mbox{Fig. S4 Photocatalytic H_2 evolution as a function of reaction time with different mass ratio of dye TC2 and g-C_3N_4 $N_5/TC2$ samples in AA under $\lambda \ge 400$ nm. $$ \mbox{mm}$$

Table S1.	The corresponding	hydrogen production	, light intensity for t	the calculation of AQY	and the obtained
-----------	-------------------	---------------------	-------------------------	------------------------	------------------

AQY value of $g-C_3N_4/1C1$.						
Band- pass filters	Photon flux (µmol m ⁻² s ⁻¹)	The irradiation area S(cm ²)	The calculated photon moles (mol/s)	The H_2 volume of g- $C_3N_4/TC1$ for1hour(ml/ h)	The calculated H_2 moles of g- $C_3N_4/TC1(mol/s)$	The obtained AQY value of g-C ₃ N ₄ /TC1
420 nm	108.9	23.75	2.586×10-7	4.00	4.547×10 ⁻⁸	35.16%
500 nm	153.1	23.75	3.636×10 ⁻⁷	4.33	4.922×10 ⁻⁸	27.07%
520 nm	198.0	23.75	4.702×10 ⁻⁷	3.50	3.979×10 ⁻⁸	16.92%
600 nm	239.9	23.75	5.697×10 ⁻⁷	1.35	1.535×10 ⁻⁸	5.39%

Table S2. The corresponding hydrogen production, light intensity for the calculation of AQY and the obtained

AQY value of $g-C_3N_4/TC2$.						
Band- pass filters	Photon flux (µmol m ⁻² s ⁻¹)	The irradiation area S(cm ²)	The calculated photon moles (mol/s)	$\begin{array}{c c} The & H_2 \\ volume & of \\ g- \\ C_3N_4/TC2 \\ for & 1 \\ hour(ml/h) \end{array}$	The calculated H ₂ moles of g- C ₃ N ₄ /TC2(mol/ s)	The obtained AQY value of g-C ₃ N ₄ /TC2
420 nm	108.9	23.75	2.586×10-7	3.12	3.547×10 ⁻⁸	27.43%
500 nm	153.1	23.75	3.636××10 ⁻⁷	2.10	2.387×10 ⁻⁸	13.14%
520 nm	198.0	23.75	4.702×10 ⁻⁷	2.00	2.274×10 ⁻⁸	9.67%
600 nm	239.9	23.75	5.697×10 ⁻⁷	0.26	2.956×10 ⁻⁹	1.04%

The specific calculation process example: Apparent quantum yields (AQY) calculation for g-C₃N₄/TC1 sample

1. The calculated H₂ moles produced from g-C₃N₄/TC1: for band-pass filter λ = 420 nm

Volume of gas liberated in reaction = 4.0 ml/h = 0.0040 L/h

Form std. gas equation **PV= nRT**

n = 0.004L x 1 atm / 0.082 L.atm mol-1 K $^{-1}$ x 298 K

The corresponding amount of H₂ in moles = 0.000164 moles/h = 4.547×10^{-8} moles/s

2. The calculated photon moles (mol/s):for band-pass filter λ = 420 nm

Photon flux (μ mol m⁻² s⁻¹)=108.9 μ mol m⁻² s⁻¹

The irradiation area S(cm²)=23.75cm²

The calculated photon moles (mol/s)=108.9×23.75/10000×0.000001=2.586×10⁻⁷ mol/s

3. The calculated AQE %: for band-pass filter λ = 420 nm

 $AQY(\%) = \frac{2 \times \text{number of evolved H}_2 \text{ molecules}}{\text{number of incident photons}} \times 100$

$$AQY(\%) = \frac{2 \times 4.547 \times 10^{-8}}{2.586 \times 10^{-7}} \times 100$$

AQY(%) = 35.16%

The calculation process is similar with the above calculation example and the relevant data should be made adaptive adjustments for other samples.

Table S3. The comparison of other dye-sensitized g-C₃N₄ for photocatalytic H₂ production.

Photocatalyst	Reaction conditions	Wavelength of incident light (λ)	H_2 production activity	AQY/%	Ref.
MgPc-mpg- C ₃ N ₄ /Pt	10vol% TEOA	λ≥640 nm	4.5µmol h ⁻¹ (λ≥640 nm)	0.07% (λ= 660 nm)	S 1
2n-tri-PCNC-1- g-C ₃ N ₄ /Pt co- adsorbed CDCA	5µmol g ⁻¹ dye, 50 mM AA	λ≥500 nm,	125.2µmol h ⁻¹	1.85% at (λ= 700 nm)	S2
ZnPcNcs-Pt/g- C ₃ N ₄	5μmol g ⁻¹ dye, 50 mM AA	λ≥500 nm,	263µmol h-1	0.97%	S 3
Zn-tri-PcNc-2- g-C ₃ N ₄ /Pt	5μmol g ⁻¹ dye, 50 mM AA	λ≥500 nm,	132µmol h ⁻¹	1.13% (λ= 685 nm)	S4
EY-mpg- C ₃ N ₄ /Pt	15% TEOA, H2PtCl6	λ≥420 nm	115.5µmol h ⁻¹	20.5%(λ=490 nm), 14.4%(λ= 520 nm), 19.4% (λ= 550 nm)	85
ErB-Pt/g-C ₃ N ₄ nanosheets	5% TEOA, 0.2g ErB	λ≥550 nm	162.5µmol h-1	33.4% (λ= 460 nm)	S 6
P3HT-g-C ₃ N ₄	3wt% P3HT, Na ₂ S-Na ₂ SO ₃	λ≥400 nm	162.5µmol h ⁻¹	2.9% (λ= 420 nm)	S7
BF-g-C ₃ N ₄ /Pt	10% TEOA	λ≥420 nm	$1619.0 \mu mol$ g ⁻¹ h ⁻¹	none	S8
g-C ₃ N ₄ /TC1/Pt	saturated AA solution	λ≥400 nm	73555.8 μmol·h ⁻¹ ·g ⁻¹	$35.2\%(\lambda=420$ nm), 27.1%($\lambda=$ 500nm), 16.9%($\lambda=520$ nm), 5.4%($\lambda=$ 600 nm)	This work
g-C ₃ N ₄ /TC2/Pt	saturated AA solution	λ≥400 nm	70986.8µmol∙ h ⁻¹ ∙g ⁻¹	27.4% $(\lambda=420$ nm), 13.1% $(\lambda=500$ nm), 9.6% $(\lambda=520$ nm), 1.04% $(\lambda=600$ nm)	This work

References

S1. K. Takanabe, K. Kamata, X. C. Wang, M. Antonietti, J. Kubota and K. Domen, Phys. Chem. Chem. Phys., 2010, 12, 13020-13025.

S2. X. H. Zhang, L. J. Yu, C. S. Zhuang, T. Y. Peng, R. J. Li and X. G. Li, ACS Catal., 2014, 4, 162-170.

S3. X. H. Zhang, L. J. Yu, R. J. Li, T. Y. Peng and X. G. Li, Catal. Sci. Technol., 2014, 4(9), 3251-3260.

S4. L. J. Yu, X. H. Zhang, C. S. Zhuang, L. Lin, R. J. Li and T. Y. Peng, Phys. Chem. Chem. Phys., 2014, 16, 4106-4114.

S5. S. X. Min and G. X. Lu, J. Phys. Chem. C, 2012, 116, 25415-25424.

S6. Y. B. Wang, J. D. Hong, W. Zhang and R. Xu, Catal. Sci. Technol., 2013, 3, 1703-1711.

S7. H. J. Yan and Y. Huang, Chem. Commun., 2011, 47, 4168–4170.

S8. H. Zhang, J. Lin, Z. Li, T. Li, J. Zhu, Catal. Sci. Technol., 2019,9, 502-508.