Electronic Supplementary Information

Hydrodeoxygenation of anisole to benzene over Fe₂P catalyst by a

direct deoxygenation pathway

Shuyuan Wang,^{a,b} Dan Xu,^{*,a} Yunlei Chen,^b Song Zhou,^b Di Zhu,^a Xiaodong Wen,^{*,b,c} Yong Yang^{b,c} and Yongwang Li^{b,c}

^a Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan,

250014, People's Republic of China

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China

^c National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, People's Republic of China

*Corresponding Author: xudan@sderi.cn; wxd@sxicc.ac.cn

1. Figures

Fig. S1	S3
Fig. S2	S4
Fig. S3	
Fig. S4	S6
Fig. S5	S7
Fig. S6	
Fig. S7	
Fig. S8	S10
Fig. S9	S11
Fig. S10	S12
Fig. S11	S13
Fig. S12	S14
Fig. S13	S15
Fig. S14	S16
Fig. S15	S17
Fig. S16	S18
Fig. S17	S19
Fig. S18	S20
2. Tables	
Table S1	S21
3. Kinetic measurements	S22
4. References.	S28

1. Figures

Fig. S1 Route for the synthesis of Fe₂P catalyst by a two-step phosphorization method. The first step is the reduction of Fe₂O₃ to α -Fe. The second step is heating the NaH₂PO₂ to produce PH₃ to phosphatize the α -Fe.

Fig. S2 SEM images and XRD patterns of Fe_2P prepared via TPR method.

Fig. S3 MS signal of PH_3 (m/e = 34) during the reduction of Fe_2P catalyst.

Fig. S4 Selectivity of benzene, 2-methylanisole, phenol and cyclohexane as a function of anisole conversion measured via different space time of anisole (200 °C, 0.1 MPa, H_2 /anisole = 50).

Fig. S5 Selectivity of benzene, 2-methylanisole, phenol and cyclohexane as a function of reaction temperature (0.1 MPa, H_2 /anisole = 50, WHSV = 1 h⁻¹).

ACS Catal., 2015, 5, 4104-4114. ACS Catal., 2017, 8147-8151. Appl. Catal. A, 2018, 549, 225-236. Appl. Catal. B, 2017, 208, 60-74. Catal. Today, 2011, 172, 103-110. Ind. Eng. Chem. Res., 2017, 56, 6419. J. Catal., 2011, 281, 21-29.

- J. Catal., 2014, 319, 44-53.
- J. Catal., 2017, 354, 61-77.

ACS Catal., 2016, **6**, 3506-3514. Appl. Catal. A, 2016, 514, 224-234. Appl. Catal. B, 2016, 197, 206-213. Appl. Catal. B, 2019, 250, 280-291. Chem. Eng. J., 2018, 335, 120-132. J. Catal., 1985, 94, 230-238. J. Catal., 2012, 285, 315-323. J. Catal., 2016, 340, 219-226.

Fig. S7 Transient response curves of CO remained during pulse of 5.01%CO/He into pure He at 30

°C over the Fe₂P catalyst.

Fig. S8 Temperature-programmed desorption of ammonia over the Fe_2P and $15Fe/SiO_2$ catalysts.

Fig. S9 Typical GC spectroscopy signals of hydrocarbons in tail gas. (Channel A with flame

ionization detector (FID1 A)).

Fig. S10 Typical GC spectroscopy for hydrocarbons in tail gas. (Channel B with flame ionization

detector (FID2 B)).

Fig. S11 Relationship of surface free energies of the most stable facets to $\Delta\mu$ (the boundary of μ = -5.37 and -6.64 eV).

Fig. S12 Adsorption configurations and adsorption energies of anisole on $Fe_2P(101)$ surface (Fe:

blue, P: purple, C: gray, O: red, H: white).

Fig. S13 Potential reaction pathways of anisole conversion.

Fig. S14 Arrhenius plots of Fe₂P catalyst.

Fig. S15 Possible reaction pathway of anisole over Fe₂P catalyst.

Fig. S16 Top (a) and side (b) view of $Fe_2P(101)$ surface.

Fig. S17 Adsorption configurations and adsorption energies of H atoms on $Fe_2P(101)$ surface. Bri-

bri (a), bri-hole (b) and hole-hole (c) configurations. (C: gray, O: red, H: white).

Fig. S18 Energy profiles of H_2 dissociation on the $Fe_2P(101)$ surface and the correspond barrier is

given in the parenthesis.

2. Tables

	relative con	centration / %			
catalyst	fresh		spent	spent	
	Fe ^o	$Fe^{\delta +}$	Fe ⁰	Fe^{δ^+}	
Fe ₂ P	46.9	53.1	73.0	27.0	

Table S1 XPS spectra of Fe2p of Fe_2P catalyst.

3. Kinetic measurements

Kinetic measurements of vapor phase anisole hydrodeoxygenation on Fe₂P catalysts

(1) The absence of heat transfer was checked by Mears' criterion.^{1, 2}

$$C_{\rm M} = \left| \frac{-\Delta H r_{\rm obs} \rho_{\rm b} R E}{h T^2 R_{\rm g}} \right|$$

Where ΔH = heat of reaction (for C₇H₈O + H₂ \rightarrow C₆H₆ + CH₃OH)

r_{obs} = observed reaction rate, kmol/kg_{cat}·s

 ρ_b = density of catalyst bed, kg/m³

R = catalyst particle radius, m

E = activation energy, kJ/mol

h = heat transfer coefficient between gas and pellet, $J/m^2 \cdot s \cdot K$

 $R_g = gas constant, kJ/mol·K$

T = reaction temperature, K

In the current work, a gas flow rate of 55.3 ml min⁻¹ and a catalyst particle size of 0.177-

0.250 mm were employed for the kinetic study. And the concentration of anisole employed in

the feed was 1.96 % (the molar ratio of H₂ and anisole is 50:1).

First, the Reynolds number (Re) is calculated according to the followed formula:

$$Re = \frac{U\rho d_p}{\mu}$$

Where U = free-stream velocity, m/s

 ρ = fluid density, kg/m³

d_p =diameter of pellet, m

 μ = viscosity, kg/m·s

The viscosity is calculated according to the following formula:

$$\mu = (2.6693 \times 10^{-5}) \frac{\sqrt{MT}}{\sigma^2 \Omega_{\mu}}$$

Where M = molecular weight, g/mol

T = temperature, K

 σ = collision diameter, Å

 Ω_{μ} = collision integrals for use with the Lennard-Jones potential

Since Re << 1, heat transfer coefficient was estimated by assuming Nu (Nusselt number = $h \times d_1(k) = 2$ theory

$$d_p/k_t$$
) = 2, then:

$$\mathrm{Nu} = \frac{\mathrm{hd}_{\mathrm{p}}}{\mathrm{k}_{\mathrm{t}}} \approx 2$$

Where h = heat transfer coefficient, $J/m^2 \cdot s \cdot K$ or Watts/m²·K

- d_p = diameter of pellet, m
- k_t = thermal conductivity, J/K·m·s
- For H_2 , the k_t is calculated using the following formula:

$$k_{t} = (\tilde{C}_{p} + \frac{4}{5}R_{g}) \times \frac{\mu}{M}$$

Where R_g = universal gas constant, cal/mol·K

 μ = viscosity, kg/m·s

 \tilde{C}_p = heat capacity J/mol·K

For the Fe₂P catalyst,

T = 473.15 K

 $Re = 5.689 \times 10^{-3}$

$$\mu = 1.205 \times 10^{-5} \text{ kg/m} \cdot \text{s}$$

$$\tilde{C}_p = 7.159 \text{ cal/mol}\cdot\text{K}$$

 $k_t = 0.243 \text{ J/K} \cdot \text{m} \cdot \text{s}$

 $\Delta H = -74.6 \text{ kJ/mol} (\text{for } C_7H_8O + H_2 \rightarrow C_6H_6 + CH_3OH)$

- $r_{obs} = 5.571 \times 10^{-7} \text{ kmol/kg}_{cat} \cdot \text{s}$
- ρ_b = 1050 kg/m³
- $R = 1.0675 \times 10^{-4} m$
- $E = 7.38 \times 10^4 \text{ kJ/kmol}$
- $h = 2.424 \times 10^3 \text{ J/m}^2 \cdot \text{s} \cdot \text{K}$
- $R_g = 8.3145 \times 10^{-3} \text{ kJ/mol} \cdot \text{K}$

$$\frac{\left| -\Delta Hr_{obs}\rho_{b}RE \right|}{hT^{2}R_{g}}$$

$$= \frac{(74.6 \frac{\text{kJ}}{\text{mol}}) \times (5.571 \times 10^{-7} \frac{\text{kmol}}{\text{kg}_{\text{cat}} \cdot \text{s}}) \times (1050 \frac{\text{kg}}{\text{m}^3}) \times (1.0675 \times 10^{-4} \text{ m}) \times (7.38 \times 10^4 \frac{\text{kJ}}{\text{kmol}})}{(2.424 \times 10^3 \frac{\text{J}}{\text{m}^2 \cdot \text{s} \cdot \text{K}}) \times (473.15 \text{ K})^2 \times (8.3145 \times 10^{-3} \frac{\text{kJ}}{\text{mol} \cdot \text{K}})}$$
$$= 7.62 \times 10^{-8} < 0.15$$

Therefore, heat transfer effect during the kinetic experiment could be neglected

(2) The absence of mass transport resistances was checked by Weisz-Prater Criterion (C_{WP}) for Internal Diffusion.³

$$C_{WP} = \frac{r_{obs} \rho_c R_p^2}{D_e C_s} < 1$$

Where r_{obs} = observed reaction rate, mol/kg_{cat}·s

 ρ_c = density of catalyst pellet, kg/m³

R_p = catalyst particle radius, m

 D_e = effective diffusivity, m²/s

C_s = gas concentration of A at the external surface of the catalyst, mol/m³.

 C_s is gas concentration of A at the external surface of the catalyst in mol/m³. C_s is calculated according to the following formula: ^c

$$C_{s} = C_{o} = \frac{N_{anisole}}{V} = \frac{P_{anisole}}{R_{g}T}$$

Where $\mathsf{P}_{\mathsf{hep}}$ is the pressure of anisole, atm

T = reaction temperature, K

R_g = universal gas constant, atm·cm³/mol·K

The average velocity for the anisole molecular is:

$$\bar{v} = \sqrt{\frac{8k_bT}{\pi m}}$$

Where k_{b} = the Boltzmann'n contant, $1.38 \times 10^{-5} \mbox{ J/K}$

m = mass of anisole molecular

The mean free path in the gas phase is:

$$\lambda = \frac{1}{\sqrt{2}\pi\sigma^{2}} \frac{N_{anisole}}{V} = \frac{R_{g}T}{\sqrt{2}\pi\sigma^{2}P_{anisole}}$$

Where σ = molecular diameter, 4.3 × 10⁻⁸ cm

The pore diameter is 0.65 nm (from BJH desorption branch), which is much less than the mean free path (λ). Consequently, pore diffusion will be dominated by Knudsen diffusion and

$$D_{e} \approx D_{Kn} \left(\sum_{k=1}^{N} \frac{v\lambda}{3} \right)$$

For the Fe₂P catalyst,

 $r_{obs} = 5.571 \times 10^{-4} \text{ mol/kg}_{cat} \cdot \text{s}$

 $\rho_{c} = 1500 \text{ kg/m}^{3}$

$$R_p = 1.0675 \times 10^{-4} m$$

$$D_e = 1.10 \times 10^{-6} \text{ m}^2/\text{s}$$

 $C_s = 0.5053 \text{ mol/m}^3$.

$$C_{WP} = \frac{r_{obs}\rho_c R_p^2}{D_e C_s}$$

=
$$\frac{(5.571 \times 10^{-4} \frac{mol}{kg_{cat} \cdot s}) \times (1500 \frac{kg}{m^3}) \times (1.0675 \times 10^{-4} m)^2}{(1.10 \times 10^{-6} \frac{J}{m^2 \cdot s \cdot K}) \times (0.5053 \frac{mol}{m^3})}$$

= $1.6 \times 10 - 2 < 1$

Therefore, internal diffusion effect could be neglected during the kinetic experiments.

(3) The absence of mass transport resistances was checked by Mears' Criterion (MR) for External Diffusion.^[1, 4]

$$MR = \frac{r_{obs}\rho_c R_p n}{k_c C_{Ab}} < 0.15$$

Where robs= observed reaction rate, mol/kgcat's

 ρ_c = density of catalyst pellet, kg/m³

R_p = catalyst particle radius, m

n = reaction order

k_c = external mass transfer coefficient, m/s

 C_{Ab} = bulk gas concentration of A, mol/m³

For the H_2 -anisole system, the diffusion coefficient of anisole is calculated based on the

following formula: [2]

$$D_{AB} = 0.001853 \times \sqrt{T^{3}(\frac{1}{M_{A}} + \frac{1}{M_{B}})} \times \frac{1}{P\sigma_{AB}^{2}\Omega_{D_{AB}}}$$
$$\Omega_{AB} = \frac{1.06036}{T^{*0.15610}} + \frac{0.193}{e^{0.47635 \cdot T^{*}}} + \frac{1.03578}{e^{1.52996 \cdot T^{*}}} + \frac{1.76474}{e^{3.89411 \cdot T^{*}}}$$

Where D_{AB} = binary diffusion coefficient of A in B, m²/s

$$\begin{split} \phi_{p} &= \text{pellet porosity} \\ \sigma_{c} &= \text{constr}^{iction} factor \\ \tilde{\tau} &= \text{tortuosity} \\ M_{A} &= \text{molecular weight of H}_{2}, \text{g/mol} \\ M_{B} &= \text{molecular weight of anisole, g/mol} \\ P &= \text{reaction pressure, atm} \\ \sigma_{AB} &= \text{Lennard-Jones parameter, Å} \\ \Omega_{AB} &= \text{collision Integral} \end{split}$$

$$\mathsf{T}^* = \frac{kT}{\varepsilon}$$

Because Re << 1, the Nusselt number ($Sh = 2 + 0.6Re^{1/2}Sc^{1/3}$) can be estimated to be 2 (Sc is

$$Sc = \frac{v}{D_{AB}}$$
. Then,

$$Sh = \frac{k_c \times d_p}{D_{AB}} \approx 2$$

Where k_c = external mass transfer coefficient, m/s

d_p = diameter of pellet, m

For the Fe₂P catalyst,

 $r_{obs} = 5.571 \times 10^{-4} \text{ mol/kg}_{cat} \cdot \text{s}$

 $\rho_{\rm b}$ = 1050 kg/m³

 $R_p = 1.0675 \times 10^{-4} \text{ m}$

n = 0.5

k_c = 0.56 m/s

C_{AB} = 0.4171 mol/m³

 $\frac{r_{obs}\rho_cR_pn}{k_cC_{Ab}}$

$$=\frac{(5.571 \times 10^{-4} \frac{\text{mol}}{\text{kg}_{\text{cat}} \cdot \text{s}}) \times (1050 \frac{\text{kg}}{\text{m}^3}) \times (1.0675 \times 10^{-4} \text{ m}) \times 0.5)}{(0.56 \frac{\text{m}}{\text{s}}) \times (0.4171 \frac{\text{mol}}{\text{m}^3})}$$

= 1.34 × 10⁻⁴ < 0.15

Therefore, external diffusion effect could be neglected during the kinetic experiments.

4. References

- 1 H.S. Fogler, Elements of Chemical Reaction Engineering, 5th ed, Prentice Hall, Upper Saddle River, NJ, **2016**.,
- R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd Edition, John Wiley & Sons, Inc,
 605 Third Avenue, New York, 2002.,
- 3 M. Albert Vannice, Kinetics of Catalytic Reactions, Springer Science + Business Media, Inc., 233 Spring Street, New York, NY 10013, USA, **2005**.,
- 4 W.-S. Lee, Z. Wang, R.J. Wu, A. Bhan, J. Catal., 2014, **319**, 44-53.