Efficient Methanol Carbonylation to Methyl Acetate Catalyzed by Cyclic(alkyl)(amino)carbene Iridium Complex

Dejin Zhang,^{ab} Guoqiang Yang, ^a Yue Zhao, ^a Shouyan Shao,^c Guisheng Zhu,^c Peijun Liu,^c Jia Liu, ^a Xingbang Hu*^a and Zhibing Zhang^{*a}

^a School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.

^b School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000,

P. R. China.

^c Jiangsu SOPO (Group)CO.,LTD, Zhengjiang,212006,P. R. China.

Index

- 1. General considerations
- 2. Synthesis and characterization
- 3. General procedure for catalytic methanol carbonylation reactions
- 4. Optimization of reaction conditions
- 5. Original NMR spectra
- 6. Original MS spectra
- 7. IR spectra of C-3, C-4 and (NHC)Ir(CO)₂Cl
- 8. XRD spectra of C-3 and C-4
- 9. Crystal data for C-2
- 10. Crystal data for C-3
- 11. Theoretical calculation method
- 12. Cartesians coordinates of the optimized structures
- 13. TGA curves for C-2 and C-3

1. General considerations

All reactions were performed under an atmosphere of nitrogen by using standard Schlenk techniques. Solvents were dried by standard methods. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. Mass spectroscopy (MS) measurements were performed on a Thermo Finnigan Q-TOF spectrometer. X-ray structure was measured with a Bruker AXS apparatus (Smart APEX II). A Shimadzu 2014C GC system was used to monitor the reaction conversion.

2. Synthesis and characterization

2.1 Synthesis and characterization of C-2

C-1 was prepared according to references.¹³ Then, C-1 was used to synthesis C-2.

A certain amount of C-1 (0.4012 g), potassium bis(trimethylsily)amide (0.2194 g) and [Ir(COD)Cl]₂ (0.1678 g) was put in a dried Schlenk bottle under nitrogen atmosphere. THF was added by syringe at -78°C under nitrogen, then the mixture was warmed to room temperature and stirred for 12 h. All volatiles were evaporated to dryness. Diatomite was employed to remove salts in the crude product. Finally, the residue was purified by column chromatography on silica gel with benzene and n-hexane (1:2) as eluent. After removing the solvent, C-2 was obtained as yellow powder (yield: 75%). Single crystals were obtained at room temperature from an ether solution. ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 261.18 (C_{carben}), 148.10, 146.42, 137.64, 128.90, 87.28, 83.53, 56.31, 48.73, 28.95, 28.35, 32.37, 31.11, 48.62, 36.48,

28.02, 25.29, 33.78, 27.25, 26.62, 26.33, 25.59, 24.41, 12.43, 9.71; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.39 (d, 2H), 7.14 (t, 1H), 4.91 (t, 1H), 4.23 (m, 1H), 3.78 (m, 1H), 2.97 (m, 1H), 2.69 (m, 1H), 2.32 (m, 1H), 1.98 (m, 3H), 1.79 (m, 3H), 1.59 (m, 4H), 1.56 (m, 3H), 1.39 (m, 5H), 1.27 (m, 12H), 1.19 (m, 4H), 1.02 (m, 2H). HRMS (m/z): [M-Cl]⁺ calculated for C₃₀H₄₇NIr⁺, 614.3338; found 614.3335. Elemental analysis for C₃₀H₄₇ClIrN, calculated: C, 55.49; H, 7.30; N, 2.16; Found: C, 55.33; H, 7.41; N, 2.28.

2.2 Synthesis and characterization of C-3 and C-4

0.1 g C-2 was dissolved in 5 mL CH₂Cl₂. The obtained solution was transferred into a high-pressure autoclave (50 mL). The reactor was purged with CO to remove air. Then, CO was charged into the autoclave to 1 MPa. The reactor was stirred at room temperature for 8 h. After the reaction, the solvent was evaporated and 5 mL CCl₄ was used to wash the product. All volatiles were evaporated to dryness, and C-3 was obtained as a yellow solid (yield: 87%). Single crystals were obtained at room temperature from an ether solution. ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 253.23 (C_{carben}), 181.52, 170.44 (carbonyl carbon), 146.21, 134.29, 129.60, 125.54, 30.20, 29.11, 25.08, 10.64, 31.89, 44.16, 29.01; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.43 (t, 1H), 7.31 (d, 2H), 2.98 (m, 2H), 2.29 (m,2H), 2.03 (s, 2H), 1.91 (m, 2H), 1.38 (d, 6H), 1.32 (t, 12H), 1.19 (t, 6H). HRMS (m/z): [M-Cl]⁺ calculated for C₂₄H₃₅NO₂Ir⁺, 562.2297; found 562.2287. Elemental analysis for C₂₄H₃₅ClIrNO₂, calculated: C, 48.27; H, 5.91; N, 2.35. Found: C, 48.05; H, 6.01; N, 2.18.

0.05g C-3 was dissolved in 5 mL CH₂Cl₂. Then, the obtained mixture was put in a dried Schlenk bottle under nitrogen. 6 μ L CH₃I was added by syringe at -78°C. Then,

the mixture was warmed to room temperature and stirred for 12 h. After the reaction, all volatiles were evaporated to dryness, C-4 was obtained as yellow solid (yield: 83%). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 253.24 (C_{carben}), 181.52, 170.44 (carbonyl carbon), 146.22, 134.30, 129.60, 125.54, 30.20, 29.12, 25.08, 10.64, 1.16 (CH₃I). Elemental analysis for C₂₅H₃₅ClIIrNO₂, calculated: C, 40.62; H, 5.18; N, 1.90. Found: C, 40.74; H, 5.34; N, 1.92. Comparing with ¹³C NMR of CH₃I and C-3, a new C atom was obtained at 1.16 ppm, indicating the oxidative addition product C-4 was obtained.

2.3 Synthesis of (NHC)Ir(CO)₂Cl

0.0856 g 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride, 0.0548 g KHMDS and 0.0844 g [Ir(COD)CI]₂ were put into a dried Schlenk bottle under nitrogen atmosphere. THF was added by syringe at -78°C under nitrogen. Then the mixture was warmed to room temperature and stirred for 12 h. All volatiles were evaporated to dryness. Then 5 mL CH₂Cl₂ was used to dissolve the obtained solid in a highpressure autoclave, CO was charged into the autoclave to 1 MPa. The reactor was stirred at room temperature for 8 h. After the reaction, the solvent was evaporated and 5 mL CCl₄ was used to wash the product. All volatiles were evaporated to dryness, and (NHC)Ir(CO)₂Cl was obtained. ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 180.17 (carbonyl carbon), 176.09 (Ccarben), 168.51 (carbonyl carbon), 139.47, 135.27, 134.94, 129.42 (aromatic carbon), 123.76 (NCH=CHN), 21.34, 18.61; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.12 (s, 2H), 7.01 (s, 4H), 2.36 (s, 6H), 2.21 (s, 12H). HRMS (m/z): [M-CI]+ calculated for C₂₃H₂₄N₂O₂Ir⁺, 553.1467; found 553.1463. Elemental analysis for C₂₃H₂₄CIIIrN₂O₂, calculated: C, 46.97; H, 4.11; N, 4.76. Found: C, 47.12, H, 4.23, N, 4.66.

3. General procedure for catalytic methanol carbonylation reactions

The reaction was carried out in a high-pressure autoclave (50 mL) with a magnetic stirrer. In a typical experiment, 125 mmol of methanol, 0.1mol% of C-2 and 0.2 mL CH₃I were loaded into the reactor. The reactor was purged with CO to remove air. Then, the CO was charged into autoclave to 2 MPa. Finally, the reactor was heated to 120°C and the solution was stirred for 24 hours. After the reaction, the conversion of methanol and selectivity of methyl acetate were determined by GC.

4. Optimization of reaction conditions

Effects of reaction temperature, CO pressure, the amount of CH_3I and some other factors were investigated. The results were shown in Table S1, Fig. S1, Fig. S2 and Table S2.

Entry 7	Tommerstrang(%C)	Conversion (%) —	Selectivity(%)		
	Temperature(C)		MA	DME	AC
1	100	55.41	92.91	7.09	0
2	120	79.50	94.87	5.13	0
3	150	83.40	78.69	8.08	13.23
4	180	87.26	67.82	2.98	29.14

Table S1 Effect of reaction temperature

General condition: 0.1mol% of C-2, 125 mmol methanol, 0.2mL CH₃I, pressure of CO 2 MPa, 24 h. Conversion is based on methanol.

Fig.S1 Effect of CO pressure on methanol carbonylation. Reaction contidions: 0.05mol% of C-2, 125 mmol methanol, 0.2mL CH₃I, 24 h.

Fig.S2 Effect of CH₃I on methanol carbonylation. Reaction contidions: 0.1mol% of C-2, 125 mmol methanol, 120°C, pressure of CO 2 MPa, 24 h.

100% selectivity Scheme S1. The carbonylation of DME to MA. Condition: 10mg C-2, 0.2mL CH₃I, 5 mL THF, 0.3 MPa DME, 2 MPa CO, 120°C, 24 h. TON= (mole amount of

MA)/(mole amount of C-2) = 46.

Table S2 Additional experiments of methanol carbonylation to MA in THF

Entry	Conversion(%)	Selectivity(%)
1	61	100
2 ^a	65	100
3 ^b	66	100

General condition: 0.1mol% of C-2, 10 mmol methanol, 0.2mL CH₃I, 5mL THF, pressure of CO 2 MPa, 120°C, 24 h. [a] 30 h of reaction time. [b] 60 h of reaction time.

5. Original NMR spectra.

C-1 (¹³C NMR)

C-2 (¹H NMR)

C-2 (dept90)

6. Original MS spectra

C-2

7. IR spectra of C-3, C-4 and (NHC)Ir(CO)₂Cl

Fig.S3 Comparison of IR spectra of C-3 and C-4

Fig.S4 IR spectra (NHC)Ir(CO)₂Cl

8. XRD spectra of C-3 and C-4

Fig.S5 Comparison of XRD spectra of C-3 and C-4

9. Crystal data for C-2

Empirical formula	C30 H47 Ir Cl N		
Molecular formula	C30 H47 Ir Cl N		
Formula weight	ula weight 649.33		
Temperature	193.0 K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /c		
Unit cell dimensions	a = 10.1037(6) Å	□=90°.	
	b = 11.6662(7) Å	□=97.789(2)°.	
	c = 23.6230(15) Å	$\Box = 90^{\circ}.$	
Volume	2758.3(3) Å ³		
Ζ	4		
Density (calculated)	1.563 g/cm ³		
Absorption coefficient	6.882 mm ⁻¹		
F(000)	1312.0		
Crystal description	Block		
Theta range for data collection	3.29-53.94°		
Index ranges	-10<=h<=12, -13<=k<=13, -28<=l<=28		
Reflections collected	16260		
Independent reflections	4734 [R(int) = 0.0631, R_{sigma} =0.0573]		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	restraints / parameters 4734 / 0 / 306		
Goodness-of-fit on F ²	1.146		
Final R indexes [I>2sigma(I)] $R1 = 0.0461 \text{ wR2} = 0.1211$			
R indexes (all data)	R1 = 0.0487, $wR2 = 0.1231$		
Largest diff. peak and hole	0.74/-1.33 e.Å ⁻³		

Table S3. Crystal data and structure refinement for CAAC-IrCl(COD) complex.

Table S4. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{Å}^2 \times 10^3)$ for CAAC-IrCl(COD) complex. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	Х	У	Z	U(eq)
Cl(1)	-158.0(15)	2806.1(14)	6023.9(7)	26.3(3)
Ir(1)	1926.5(2)	3774.5(2)	6274.3(2)	17.57(13)
N(1)	3147(5)	1430(4)	6358(2)	18.6(11)

C(1)	1191(8)	2371(8)	4757(3)	43(2)
C(2)	1664(8)	251(7)	4779(3)	40.9(19)
C(3)	1834(7)	1391(6)	5118(3)	27.5(15)
C(4)	3307(6)	1599(6)	5318(3)	23.3(14)
C(5)	4129(7)	1792(6)	4893(3)	28.2(15)
C(6)	5481(7)	1984(6)	5025(3)	28.3(15)
C(7)	6063(7)	1959(6)	5587(3)	25.3(14)
C(8)	5307(6)	1741(5)	6030(3)	20.1(13)
C(9)	3921(6)	1579(5)	5883(2)	15.9(12)
C(10)	6046(6)	1698(6)	6631(3)	22.5(13)
C(11)	6605(7)	2873(6)	6838(3)	30.5(15)
C(12)	7196(6)	831(6)	6679(3)	28.7(15)
C(13)	2909(6)	262(5)	6609(3)	20.2(13)
C(14)	4012(7)	-606(6)	6548(3)	30.4(15)
C(15)	1570(7)	-197(6)	6324(3)	30.8(15)
C(16)	2605(5)	2292(5)	6620(2)	16.7(12)
C(17)	2382(6)	1871(5)	7221(3)	18.5(12)
C(18)	2831(7)	601(5)	7232(3)	24.2(14)
C(19)	3347(6)	2559(6)	7657(3)	23.3(14)
C(20)	3384(7)	2153(7)	8273(3)	35.6(17)
C(21)	942(6)	1986(6)	7366(3)	24.2(14)
C(22)	485(7)	3197(7)	7490(3)	33.8(17)
C(23)	827(7)	5389(6)	6223(3)	28.4(15)
C(24)	1566(8)	6243(6)	6630(4)	37.2(18)
C(25)	3077(8)	6118(6)	6683(4)	33.0(17)
C(26)	3515(6)	4889(5)	6603(3)	21.1(13)
C(27)	3732(6)	4432(5)	6067(3)	21.8(13)
C(28)	3541(8)	5093(6)	5508(3)	36.2(17)
C(29)	2209(7)	5731(6)	5408(3)	34.3(17)
C(30)	1130(7)	5142(6)	5684(3)	28.1(15)

Table S5. Bond	lengths [.	Å]	for CAAC-IrCl(COD) comj	plex.
----------------	------------	----	----------------	-----	--------	-------

Tuole Se. Bolla			
Atom	Atom	Length/ Å	
C(1)	C(3)	1.519(10)	
C(2)	C(3)	1.549(10)	
C(3)	C(4)	1.518(9)	
C(4)	C(9)	1.394(8)	
C(4)	C(5)	1.407(9)	
C(5)	C(6)	1.378(10)	
C(6)	C(7)	1.379(9)	
C(7)	C(8)	1.399(9)	
C(8)	C(9)	1.409(8)	
C(8)	C(10)	1.513(8)	
C(9)	N(1)	1.461(7)	

C(10)	C(12)	1.532(9)
C(10)	C(11)	1.538(9)
C(13)	N(1)	1.519(7)
C(13)	C(14)	1.527(9)
C(13)	C(15)	1.525(9)
C(13)	C(18)	1.536(9)
C(16)	N(1)	1.337(8)
C(16)	C(17)	1.545(8)
C(16)	Ir(1)	1.995(6)
C(17)	C(19)	1.544(8)
C(17)	C(21)	1.545(8)
C(17)	C(18)	1.549(9)
C(19)	C(20)	1.527(9)
C(21)	C(22)	1.527(10)
C(23)	C(30)	1.380(10)
C(23)	C(24)	1.510(10)
C(23)	Ir(1)	2.181(6)
C(24)	C(25)	1.522(11)
C(25)	C(26)	1.519(9)
C(26)	C(27)	1.418(9)
C(26)	Ir(1)	2.129(6)
C(27)	C(28)	1.519(9)
C(27)	Ir(1)	2.097(6)
C(28)	C(29)	1.528(10)
C(29)	C(30)	1.510(9)
C(30)	Ir(1)	2.199(6)
Cl(1)	Ir(1)	2.3925(15)

Table S6. Bond angles [°] for CAAC-IrCl(COD) complex.

Atom	Atom	Atom	Angle/°
C(4)	C(3)	C(1)	112.4(6)
C(4)	C(3)	C(2)	109.5(6)
C(1)	C(3)	C(2)	110.3(6)
C(9)	C(4)	C(5)	117.3(6)
C(9)	C(4)	C(3)	125.9(6)
C(5)	C(4)	C(3)	116.8(6)
C(6)	C(5)	C(4)	121.8(6)
C(5)	C(6)	C(7)	119.7(6)
C(6)	C(7)	C(8)	121.3(6)
C(7)	C(8)	C(9)	117.8(6)
C(7)	C(8)	C(10)	117.2(5)
C(9)	C(8)	C(10)	125.0(5)
C(4)	C(9)	C(8)	122.1(6)
C(4)	C(9)	N(1)	121.4(5)

	G(A)	1(1)	116 5(5)
C(8)	C(9)	N(1)	116.5(5)
C(8)	C(10)	C(12)	111.4(5)
C(8)	C(10)	C(11)	112.5(5)
C(12)	C(10)	C(11)	108.8(5)
N(1)	C(13)	C(14)	113.7(5)
N(1)	C(13)	C(15)	108.7(5)
C(14)	C(13)	C(15)	109.9(5)
N(1)	C(13)	C(18)	100.1(5)
C(14)	C(13)	C(18)	113.2(5)
C(15)	C(13)	C(18)	110.8(5)
N(1)	C(16)	C(17)	107.8(5)
N(1)	C(16)	Ir(1)	127.0(4)
C(17)	C(16)	Ir(1)	124.6(4)
C(16)	C(17)	C(19)	106.8(5)
C(16)	C(17)	C(21)	115.7(5)
C(19)	C(17)	C(21)	109.6(5)
C(16)	C(17)	C(18)	104.0(5)
C(19)	C(17)	C(18)	109.2(5)
C(21)	C(17)	C(18)	111.2(5)
C(13)	C(18)	C(17)	106.4(5)
C(20)	C(19)	C(17)	114.0(5)
C(22)	C(21)	C(17)	116.2(5)
C30	C(23)	C(24)	125.0(7)
C30	C(23)	Ir(1)	72.3(4)
C(24)	C(23)	Ir(1)	109.3(4)
C(23)	C(24)	C(25)	113.1(6)
C(26)	C(25)	C(24)	112.7(6)
C(27)	C(26)	C(25)	123.3(6)
C(27)	C(26)	Ir(1)	69.2(3)
C(25)	C(26)	Ir(1)	113.8(5)
C(26)	C(27)	C(28)	124.7(6)
C(26)	C(27)	Ir(1)	71.6(3)
C(28)	C(27)	Ir(1)	112.1(4)
C(27)	C(28)	C(29)	112.8(6)
C(30)	C(29)	C(28)	112.6(6)
C(23)	C(30)	C(29)	124.5(7)
C(23)	C(30)	Ir(1)	71.0(4)
C(29)	C(30)	Ir(1)	112.3(4)
C(16)	Ir(1)	C(27)	98.7(2)
C(16)	Ir(1)	C(26)	100.4(2)
C(27)	Ir(1)	C(26)	39.2(2)
C(16)	Ir(1)	C(23)	156.3(2)
C(27)	Ir(1)	C(23)	97.1(3)
C(26)	Ir(1)	C(23)	81.1(2)

C(16)	Ir(1)	C(30)	164.8(3)
C(27)	Ir(1)	C(30)	80.9(3)
C(26)	Ir(1)	C(30)	88.9(2)
C(23)	Ir(1)	C(30)	36.7(3)
C(16)	Ir(1)	Cl(1)	86.21(17)
C(27)	Ir(1)	Cl(1)	151.59(18)
C(26)	Ir(1)	Cl(1)	166.76(17)
C(23)	Ir(1)	Cl(1)	88.25(19)
C(30)	Ir(1)	Cl(1)	87.21(18)
C(16)	N(1)	C(9)	124.2(5)
C(16)	N(1)	C(13)	113.4(5)
C(9)	N(1)	C(13)	122.4(5)

Table S7.Anisotropic displacement parameters $(Å^2 \times 10^3)$ for CAAC-IrCl(COD)complex.The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2]$

		-				
Atom	U11	U22	U33	U23	U13	U12
C(1)	38(4)	63(5)	27(4)	9(4)	0(3)	22(4)
C(2)	32(4)	52(5)	38(4)	-24(4)	2(3)	-11(4)
C(3)	23(3)	40(4)	19(3)	-4(3)	0(3)	1(3)
C(4)	24(3)	21(3)	24(3)	0(3)	2(3)	-2(3)
C(5)	37(4)	37(4)	12(3)	2(3)	7(3)	2(3)
C(6)	33(4)	38(4)	17(3)	1(3)	17(3)	-1(3)
C(7)	23(3)	27(3)	27(3)	-2(3)	6(3)	3(3)
C(8)	18(3)	19(3)	22(3)	-6(3)	0(2)	-1(2)
C(9)	19(3)	16(3)	13(3)	4(2)	4(2)	-3(2)
C(10)	20(3)	27(3)	21(3)	2(3)	3(2)	-1(3)
C(11)	27(4)	36(4)	26(3)	-8(3)	-4(3)	1(3)
C(12)	21(3)	35(4)	30(4)	-2(3)	0(3)	10(3)
C(13)	24(3)	13(3)	24(3)	1(2)	2(3)	-1(2)
C(14)	32(4)	21(3)	37(4)	7(3)	4(3)	2(3)
C(15)	31(4)	24(3)	37(4)	0(3)	3(3)	-13(3)
C(16)	11(3)	22(3)	17(3)	-4(2)	4(2)	0(2)
C(17)	15(3)	22(3)	20(3)	2(3)	7(2)	-2(2)
C(18)	30(4)	20(3)	22(3)	1(3)	1(3)	0(3)
C(19)	22(3)	30(3)	17(3)	-2(3)	1(2)	0(3)
C(20)	34(4)	51(5)	22(3)	-5(3)	6(3)	-7(3)

 $a^{*2}U_{11} + ... + 2 h k a^{*} b^{*} U_{12}$]

C(21)	21(3)	30(4)	23(3)	-1(3)	8(3)	-3(3)
C(22)	30(4)	45(4)	29(4)	1(3)	15(3)	5(3)
C(23)	19(3)	28(4)	38(4)	3(3)	3(3)	7(3)
C(24)	42(5)	26(4)	45(5)	-3(3)	9(4)	9(3)
C(25)	34(4)	27(4)	39(4)	-4(3)	8(3)	0(3)
C(26)	19(3)	17(3)	28(3)	1(3)	4(3)	-6(2)
C(27)	17(3)	22(3)	27(3)	3(3)	5(2)	-6(3)
C(28)	39(4)	32(4)	41(4)	7(3)	14(3)	-5(3)
C(29)	36(4)	33(4)	34(4)	20(3)	6(3)	2(3)
C(30)	26(3)	29(4)	28(3)	11(3)	-4(3)	-2(3)
Cl(1)	18.5(7)	30.3(8)	29.3(8)	1.3(7)	0.8(6)	-4.6(6)
Ir(1)	16.02(19)	17.22(18)	19.28(18)	1.5(1)	1.70(11)	0.18(9)
N(1)	22(3)	16(2)	18(3)	4(2)	1(2)	-3(2

(P		
Atom	x	У	Z	U(eq)
H(1A)	1335.14	3090.71	4970.46	65
H(1B)	230.33	2229.07	4664.18	65
H(1C)	1593.24	2426.68	4402.82	65
H(2A)	2182.74	283.48	4457.99	61
H(2B)	717.7	136.26	4634.26	61
H(2C)	1982.84	-386.27	5031.51	61
H(3)	1366.5	1313.82	5462.69	33
H(5)	3741.48	1790.07	4502.99	34
H(6)	6010.18	2133.47	4729.78	34
H(7)	6995.43	2093.15	5676.55	30
H(10)	5402.54	1444.35	6891.91	27
H(11A)	7283.95	3116.39	6603.31	46
H(11B)	7008.8	2816.36	7238.04	46
H(11C)	5878.99	3436.4	6803.83	46
H(12A)	6867.53	99.12	6511.02	43
H(12B)	7547.72	716.76	7082.25	43
H(12C)	7907.05	1122.55	6474.12	43
H(14A)	4113.5	-690.05	6143.3	46
H(14B)	3776.2	-1347.73	6700.83	46
H(14C)	4855.23	-335.58	6760.32	46
H(15A)	883.2	394.36	6331.37	46
H(15B)	1324.36	-876.22	6530.88	46
H(15C)	1640.63	-403.86	5927.48	46
H(18A)	3714.06	511.91	7466.52	29
H(18B)	2177.25	111.48	7395.65	29
H(19A)	4259.08	2505.58	7549.26	28
H(19B)	3080.19	3375.89	7634.14	28
H(20A)	2517.72	2299.67	8401.5	53
H(20B)	4084.21	2568.18	8518.68	53
H(20C)	3575.22	1328.87	8294.68	53
H(21A)	321.93	1673.24	7041.9	29
H(21B)	859.84	1501.63	7703.15	29
H(22A)	941.52	3450.44	7860.87	51
H(22B)	-482.61	3198.08	7496.9	51
H(22C)	702.27	3718.57	7190.41	51
H(23A)	-97.64	5103.83	6235.31	34
H(24A)	1282.45	6144.86	7012.04	45
H(24B)	1316.67	7028.11	6496.4	45
H(25A)	3418.37	6609.35	6393.56	40

Hydrogen coordinates ($Å \times 10^4$) and isotropic displacement parameters

 $(\text{\AA}^2 \times 10^3)$ for CAAC-IrCl(COD) complex.

Table S8.

H(25B)	3478.21	6390.02	7065.12	40
H(26A)	4063.13	4592.54	6972.3	25
H(27A)	4343.93	3762	6007.59	26
H(28A)	3589.93	4551.63	5188.4	43
H(28B)	4278.86	5651.5	5508.34	43
H(29A)	2336.56	6517.4	5562.84	41
H(29B)	1917.59	5792.93	4991.49	41
H(30A)	312.01	4754.86	5478.12	34

10. Crystal data for C-3

Table S9. Crystal data and structure refinement for CAAC-IrCl(COD) complex.

Empirical formula	C24 H35 Ir Cl N O2	
Molecular formula	C24 H35 Ir Cl N O2	
Formula weight	597.18	
Temperature	296.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /n	
Unit cell dimensions	a = 9.4294(3) Å	$\Box = 90^{\circ}.$
	b =15.2306(4) Å	$\Box = 94.9040(10)^{\circ}.$
	c = 16.4958(5) Å	$\Box = 90^{\circ}.$
Volume	2360.38(12) Å ³	
Ζ	4	
Density (calculated)	1.680 g/cm ³	
Crstal size/mm ³	0.120*0.110*0.090	
F(000)	1184.0	
Crystal description	Block	

Theta range for data collection	5.094-56.586°
Index ranges	-12<=h<=12, -20<=k<=20, -20<=l<=22
Reflections collected	23267
Independent reflections	5835 [$R_{int} = 0.0264$, $R_{sigma} = 0.0243$]
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5835/ 0/270
Goodness-of-fit on F ²	0.969
Final R indexes [I>2sigma(I)]	R1 = 0.0198 , wR2 = 0.0469
R indexes (all data)	R1 = 0.0245, wR2 = 0.0490
Largest diff. peak and hole	0.86/-0.64Å ⁻³

Table S10. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for CAAC-IrCl(CO)₂ complex. U(eq) is defined as one third

Atom	Х	у	Z	U(eq)
C1	210(3)	6262.1(19)	4758(2)	45.0(7)
C2	2234(4)	6591(2)	3937.4(19)	48.5(8)
C3	1742(3)	6629.1(17)	4798.4(17)	32.6(6)
C4	2762(2)	6117.4(15)	5388.5(16)	25.4(5)
C5	2882(3)	5219.1(16)	5244.1(17)	32.0(5)
C6	3787(3)	4689.0(16)	5721.8(19)	35.5(6)
C7	4641(3)	5060.6(16)	6349.0(18)	33.0(6)
C8	4602(2)	5956.6(15)	6526.0(16)	25.9(5)
C9	3624(2)	6479.3(14)	6044.4(15)	22.4(4)
C10	5677(3)	6294.1(17)	7190.9(17)	32.0(5)
C11	5530(4)	5845(2)	8014.8(19)	51.2(8)
C12	7190(3)	6142(2)	6947(2)	47.5(8)
C13	2268(2)	7636.7(15)	6832.3(15)	24.3(5)
C14	845(2)	7205.6(17)	6588.8(18)	32.6(6)
C15	2768(3)	7356.9(19)	7693.9(17)	36.2(6)
C16	2201(2)	8632.4(15)	6728.1(18)	29.9(5)
C17	3605(2)	8917.1(14)	6411.0(15)	22.8(4)
C18	4698(2)	9255.2(16)	7093.8(16)	28.0(5)
C19	4186(3)	10003(2)	7604(2)	46.2(8)
C20	3411(3)	9627.7(16)	5746.7(17)	33.7(6)
C21	2330(4)	9435(2)	5034(2)	49.5(8)
C22	7182(3)	8196.7(17)	6474(2)	35.0(6)
C23	7763(3)	8205.3(17)	4944.2(19)	35.7(6)
Cl1	4849.9(10)	8078.7(6)	4178.1(5)	55.1(2)

of the trace of the orthogonalized U^{ij} tensor.

Ir1	6063.0(2)	8093.9(2)	5474.7(2)	26.71(4)
N1	3414.1(18)	7404.0(12)	6259.6(12)	20.5(4)
C24	4191(2)	8069.6(14)	6064.4(14)	21.2(4)
01	7854(2)	8296.0(17)	7020.6(17)	57.1(6)
O2	8776(2)	8301.4(16)	4641.9(15)	51.9(6)

Table S11. Bond lengths [Å] for CAAC-IrCl(CO)₂ complex.

Atom	Atom	Length/Å
C1	C3	1.545(4)
C2	C3	1.532(4)
C3	C4	1.523(3)
C4	C5	1.395(3)
C4	С9	1.409(3)
C5	C6	1.374(4)
C6	C7	1.377(4)
C7	C8	1.397(3)
C8	С9	1.411(3)
C8	C10	1.518(3)
C9	N1	1.470(3)
C10	C12	1.532(4)
C10	C11	1.538(4)
C13	C14	1.517(3)
C13	C15	1.520(4)
C13	C16	1.527(3)
C13	N1	1.537(3)
C16	C17	1.528(3)
C17	C24	1.533(3)
C17	C20	1.540(3)
C17	C18	1.548(3)
C18	C19	1.519(3)
C20	C21	1.517(4)
C22	01	1.068(4)
C22	Ir1	1.886(3)
C23	O2	1.124(3)
C23	Ir1	1.898(3)
Cl1	Ir1	2.3378(9)
Ir1	C24	2.088(2)
N1	C24	1.307(3)

		nen(cob) comple	//x,
Atom	Atom	Atom	Angle/º
C4	C3	C2	110.4(2)
C4	C3	C1	112.3(2)
C2	C3	C1	107.6(2)
C5	C4	С9	117.7(2)
C5	C4	C3	116.7(2)
C9	C4	C3	125.6(2)
C6	C5	C4	122.3(2)
C5	C6	C7	119.0(2)
C6	C7	C8	122.3(2)
C7	C8	С9	117.5(2)
C7	C8	C10	117.0(2)
C9	C8	C10	125.4(2)
C8	C9	C4	121.2(2)
C8	C9	N1	120.0(2)
C4	C9	N1	118.67(19)
C8	C10	C12	109.8(2)
C8	C10	C11	112.5(2)
C12	C10	C11	108.7(2)
C14	C13	C15	108.9(2)
C14	C13	C16	111.91(19)
C15	C13	C16	113.0(2)
C14	C13	N1	113.0(2)
C15	C13	N1	109.38(18)
C16	C13	N1	100.62(17)
C17	C16	C13	106.98(18)
C16	C17	C24	103.82(18)
C16	C17	C20	112.90(19)
C24	C17	C20	110.6(2)
C16	C17	C18	112.8(2)
C24	C17	C18	108.21(18)
C20	C17	C18	108.38(19)
C19	C18	C17	115.4(2)
C21	C20	C17	116.6(2)
01	C22	Ir1	175.7(3)
O2	C23	Ir1	177.4(3)
C22	Ir1	C23	87.94(12)
C22	Ir1	C24	91.52(10)
C23	Ir1	C24	175.88(10)
C22	Ir1	Cl1	173.60(8)
C23	Ir1	Cl1	86.87(10)
C24	Ir1	Cl1	93.38(7)

Table S12. Bond angles [°] for CAAC-IrCl(COD) complex.

C24	N1	С9	126.44(19)
C24	N1	C13	114.26(18)
C9	N1	C13	119.06(17)
N1	C24	C17	109.5(2)
N1	C24	Ir1	129.98(16)
C17	C24	Ir1	120.30(15)

Table S13. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for CAAC-IrCl(CO)₂

complex. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²

 $a^{*2}U_{11} + ... + 2 h k a^{*} b^{*} U_{12}$]

Atom	U11	U22	U33	U23	U13	U12
C1	35.8(14)	38.7(15)	57(2)	-6.9(14)	-14.5(13)	-0.2(11)
C2	65(2)	42.8(16)	35.3(18)	0.9(13)	-8.1(15)	-8.4(15)
C3	36.9(13)	27.1(12)	32.2(15)	-2.3(10)	-7.5(11)	-2.3(10)
C4	24.2(10)	23.5(11)	28.7(13)	0.2(9)	2.6(9)	-1.8(8)
C5	32.3(12)	26.9(12)	36.6(15)	-8.6(10)	0.9(11)	-3.8(9)
C6	38.7(14)	20.9(12)	47.9(18)	-3.3(11)	9.3(12)	0.9(10)
C7	30.9(12)	26.3(12)	42.2(16)	4.1(11)	5.0(11)	6.4(9)
C8	23.8(10)	26.5(11)	27.5(13)	1.7(9)	3.1(9)	2.7(8)
C9	22.1(10)	19.4(10)	26.4(13)	-0.2(9)	6.5(9)	0.4(8)
C10	32.2(12)	30.9(13)	31.4(15)	-0.6(10)	-5.3(10)	7.7(10)
C11	66(2)	52.8(19)	32.6(17)	7.3(14)	-7.0(14)	17.3(15)
C12	27.6(13)	44.5(16)	69(2)	-6.3(15)	-5.8(14)	8.3(11)
C13	21.9(10)	24.7(11)	27.3(13)	-0.1(9)	7.0(9)	1.8(8)
C14	23.2(11)	32.7(12)	42.9(16)	2.2(11)	9.4(10)	-1.7(9)
C15	33.4(13)	49.0(16)	27.4(14)	3.5(12)	9.7(11)	5.5(11)
C16	26.4(11)	24.4(11)	40.3(16)	-2.0(10)	10.2(10)	2.1(9)
C17	23.0(10)	21.3(10)	24.1(12)	-1.8(9)	2.5(9)	1.2(8)
C18	27.0(11)	27.4(11)	29.2(13)	-4.0(10)	0.0(9)	1.8(9)
C19	39.5(15)	50.0(17)	48.0(19)	-24.7(14)	-3.3(13)	9.8(12)
C20	42.3(14)	24.5(12)	33.4(15)	3.3(10)	-2.0(11)	1.4(10)
C21	63(2)	38.3(16)	43.5(19)	6.3(13)	-16.6(15)	4.1(13)
C22	29.8(13)	36.4(14)	41.2(17)	-2.4(12)	17.7(12)	2.6(10)
C23	37.1(14)	33.0(14)	38.8(16)	2.5(11)	14.1(12)	0.3(10)
Cl1	56.7(5)	74.6(6)	34.7(4)	-6.7(4)	8.2(3)	-21.1(4)
Ir1	27.00(5)	26.46(6)	28.00(6)	-0.66(4)	10.09(4)	-1.96(3)
N1	19.7(8)	20.2(9)	21.7(10)	-0.7(7)	2.3(7)	1.0(6)
C24	22.2(10)	22.0(10)	19.3(11)	0.8(8)	0.6(8)	-0.3(8)
01	39.8(12)	76.1(16)	56.0(17)	-6.0(13)	8.1(11)	13.3(11)
O2	41.6(12)	59.4(14)	58.6(16)	8.8(11)	26.2(11)	2.9(9)

× ,	()2	1		
Atom	X	у	Z	U(eq)
HIA	-409.93	6631.9	4415.93	68
H1B	-107.91	6247.96	5295.51	68
H1C	196.94	5678.34	4538.12	68
H2A	3218.17	6755.61	3953.12	73
H2B	1672.65	6987.96	3590.64	73
H2C	2117.91	6004.07	3729.09	73
H3	1729.3	7243.54	4974.03	39
Н5	2329.09	4970.48	4809.48	38
Н6	3823.21	4088.51	5623.2	43
H7	5265.8	4702.44	6665.82	40
H10	5531.26	6926.56	7254.37	38
H11A	4556.65	5875.08	8142.83	77
H11B	6126.63	6137.93	8431.12	77
H11C	5813.56	5241.24	7984.62	77
H12A	7373.81	5523.28	6924.7	71
H12B	7862.16	6410.66	7341.65	71
H12C	7281.97	6398.18	6422.33	71
H14A	180.41	7355.87	6976.15	49
H14B	963.18	6579.76	6577.45	49
H14C	490.28	7408.14	6058.72	49
H15A	3672.46	7623.11	7852.04	54
H15B	2862.1	6729.55	7714.98	54
H15C	2085.78	7541.41	8058.87	54
H16A	1407.33	8793.79	6343.99	36
H16B	2078.22	8914.13	7244.76	36
H18A	4973.56	8768.33	7452.42	34
H18B	5543.4	9448.13	6847.88	34
H19A	3946.47	10498.91	7260.45	69
H19B	4926.97	10163.5	8012.23	69
H19C	3360.87	9817.51	7861.21	69
H20A	3136.3	10169.53	5999.87	40
H20B	4325.78	9728.74	5535.56	40
H21A	2490.49	8856.74	4830.38	74
H21B	2429.19	9858.33	4611.2	74
H21C	1387.44	9469.75	5210.24	74

Hydrogen coordinates ($Å \times 10^4$) and isotropic displacement parameters

 $(\text{\AA}^2 \times 10^3)$ for CAAC-IrCl(CO)₂ complex.

Table S14.

11. Theoretical calculation method

All the structures were fully optimized with DFT method (B3LYP). LANL2DZ basis set was used for Ir and I. For energy calculation: 6-311++G** basis set was used for other atoms. For structure optimization: 6-31+G* basis set was used for other atoms. The influence of solvent was investigated in condensed phase using the Polarizable Continuum Model (PCM) at B3LYP-D3(BJ)/6-311++G** method. B3LYP-D3(BJ) is a DFT-D3 method including dispersion corrections. ^{S1-S4}

The computed stationary points have been characterized as minima or transition states by diagonalizing the Hessian matrix and analyzing the vibrational normal modes. In this way, the stationary points can be classified as minima if no imaginary frequencies are shown or as transition states if only one imaginary frequency is obtained. The particular nature of the transition states has been determined by analyzing the motion described by the eigenvector associated with the imaginary frequency. All calculations were performed with the Gaussian 09 suite of programs ^{S5}.

6	0	-0.514272	-3.092141	-2.187473
6	0	-2.735258	-2.291721	-3.078908
6	0	-1.593724	-1.996222	-2.081291
6	0	-2.126903	-1.856451	-0.659015
6	0	-2.677095	-3.002348	-0.062221
6	0	-3.193534	-2.984573	1.227503
6	0	-3.186508	-1.793695	1.946685
6	0	-2.665525	-0.611716	1.403629
6	0	-2.110329	-0.656825	0.092941
6	0	-2.760709	0.651968	2.267463
6	0	-1.853847	0.603450	3.515516
6	0	-4.213737	0.927673	2.719786
6	0	-2.387498	1.597234	-1.204791
6	0	-3.873558	1.577093	-0.842158

12.	Cartesians	coordinates	of the	optimized	structures
-----	------------	-------------	--------	-----------	------------

C-2

6	0	-2.246470	1.345023	-2.720509
6	0	-0.266419	0.964877	-0.278831
6	0	-0.204144	2.516177	-0.471552
6	0	-1.681625	2.894241	-0.793203
6	0	0.209528	3.121542	0.904579
6	0	0.126582	4.653608	0.986700
6	0	0.746230	3.027891	-1.599425
6	0	2.251745	3.061911	-1.306629
6	0	3.560887	-0.632779	-0.100231
6	0	4.180779	-0.008360	1.136338
6	0	3.253680	-0.051323	2.374130
6	0	1.769509	0.021115	2.002482
6	0	0.953092	-1.129138	1.760927
6	0	1.426420	-2.572098	1.797624
6	0	2.753448	-2.803195	1.039288
6	0	2.907287	-1.865579	-0.149521
17	0	1.470519	-0.165696	-2.561049
77	0	1.363783	-0.187063	-0.099895
7	0	-1.542758	0.582818	-0.434373
1	0	0.292106	-2.912689	-1.472311
1	0	-0.075128	-3.081632	-3.191025
1	0	-0.928800	-4.092429	-2.008371
1	0	-3.171981	-3.282475	-2.901226
1	0	-2.350389	-2.277460	-4.105933
1	0	-3.549381	-1.561019	-3.010292
1	0	-1.111093	-1.061585	-2.367095
1	0	-2.692024	-3.930576	-0.625898
1	0	-3.604496	-3.889723	1.667917
1	0	-3.599229	-1.778504	2.951579
1	0	-2.432487	1.503197	1.667215

1	0	-2.098057	-0.256565	4.150548
1	0	-1.997063	1.511122	4.115360
1	0	-0.794750	0.536739	3.256123
1	0	-4.925560	0.880639	1.889750
1	0	-4.282472	1.923268	3.175705
1	0	-4.540881	0.202276	3.473718
1	0	-4.320007	0.590920	-1.007309
1	0	-4.396821	2.290434	-1.489438
1	0	-4.057315	1.875201	0.190692
1	0	-1.201438	1.239866	-3.022433
1	0	-2.682720	2.193098	-3.262079
1	0	-2.783791	0.445848	-3.030530
1	0	-2.172790	3.302465	0.098328
1	0	-1.755515	3.652691	-1.577894
1	0	-0.433025	2.695058	1.686123
1	0	1.227905	2.799180	1.139054
1	0	0.800423	5.141551	0.274610
1	0	0.411039	4.988772	1.991566
1	0	-0.886481	5.026372	0.793725
1	0	0.581449	2.428643	-2.498255
1	0	0.423311	4.048786	-1.843473
1	0	2.510840	3.806836	-0.545169
1	0	2.794864	3.321477	-2.223072
1	0	2.620065	2.087860	-0.972209
1	0	3.906520	-0.225955	-1.049033
1	0	4.409666	1.037138	0.897959
1	0	5.146369	-0.488712	1.363383
1	0	3.443432	-0.955613	2.965097
1	0	3.499884	0.790294	3.032987
1	0	1.261257	0.894388	2.406197

1	0	-0.102975	-1.039219	1.998985
1	0	0.639066	-3.183020	1.340517
1	0	1.514055	-2.916914	2.841575
1	0	3.606798	-2.688484	1.717369
1	0	2.790021	-3.839607	0.682956
1	0	2.768567	-2.304834	-1.134640
C-3				
6	0	-1.974284	-0.131257	-3.307824
6	0	-3.855028	1.366790	-2.583666
6	0	-2.546400	0.683605	-2.125737
6	0	-2.742724	-0.159693	-0.859729
6	0	-3.759270	-1.124337	-0.885599
6	0	-3.981976	-1.980738	0.186402
6	0	-3.164946	-1.900117	1.308788
6	0	-2.130559	-0.958809	1.401656
6	0	-1.944483	-0.067448	0.312516
6	0	-1.247424	-1.004041	2.650710
6	0	-0.457149	-2.328739	2.728367
6	0	-2.054326	-0.811266	3.953240
6	0	-1.297211	2.372690	0.890062
6	0	-1.953522	2.298226	2.276717
6	0	-2.256948	3.129105	-0.040672
6	0	0.377225	0.778625	0.148864
6	0	1.076113	2.172115	0.171224
6	0	0.082977	3.049229	0.962684
6	0	2.467944	2.176207	0.859756
6	0	3.041740	3.539844	1.287891
6	0	1.161189	2.542687	-1.350886
6	0	1.748622	3.908022	-1.738675

17	0	2.859718	-2.542701	-1.372910
77	0	1.374124	-0.874947	-0.391332
7	0	-0.920634	0.970649	0.400027
6	0	-0.028934	-1.877094	-1.187460
8	0	-0.768375	-2.700850	-1.516753
1	0	-0.953240	-0.469710	-3.119502
1	0	-1.955831	0.494912	-4.208609
1	0	-2.587115	-1.013781	-3.523871
1	0	-4.551998	0.639981	-3.016361
1	0	-3.637486	2.108063	-3.362144
1	0	-4.376572	1.874250	-1.766193
1	0	-1.817297	1.463616	-1.907465
1	0	-4.376688	-1.216947	-1.774052
1	0	-4.775303	-2.722206	0.139019
1	0	-3.323235	-2.593651	2.129399
1	0	-0.511474	-0.198323	2.582950
1	0	-1.129889	-3.187934	2.835531
1	0	0.209359	-2.316095	3.599630
1	0	0.153843	-2.480741	1.834575
1	0	-2.668974	0.094089	3.937560
1	0	-1.371447	-0.745531	4.809155
1	0	-2.722473	-1.660957	4.135862
1	0	-2.912956	1.772759	2.246414
1	0	-2.140191	3.319183	2.629259
1	0	-1.305059	1.807983	3.006062
1	0	-1.833971	3.317266	-1.029920
1	0	-2.468188	4.103285	0.414890
1	0	-3.208791	2.605988	-0.151958
1	0	0.401654	3.101946	2.009451
1	0	0.041450	4.077968	0.592789

1	0	2.393101	1.569409	1.769197
1	0	3.192974	1.673026	0.209982
1	0	3.227404	4.215038	0.450281
1	0	3.999767	3.376885	1.795429
1	0	2.388295	4.060543	1.997088
1	0	1.743903	1.755881	-1.847066
1	0	0.152416	2.473142	-1.774972
1	0	1.290482	4.738726	-1.188559
1	0	1.569854	4.085020	-2.805955
1	0	2.829933	3.951988	-1.582276
6	0	2.616325	-0.800354	1.065197
8	0	3.267597	-0.988182	1.999661

TS1

6	0	0.904056	2.914157	-2.140214
6	0	0.405617	4.572841	-0.326345
6	0	0.230756	3.099172	-0.760954
6	0	-1.239306	2.676411	-0.784346
6	0	-2.077795	3.381214	-1.661612
6	0	-3.421225	3.064513	-1.811427
6	0	-3.957737	2.008101	-1.084023
6	0	-3.183147	1.263607	-0.185685
6	0	-1.811151	1.614164	-0.035661
6	0	-3.884629	0.108523	0.535416
6	0	-4.330166	-0.982272	-0.464487
6	0	-5.118833	0.570204	1.343698
6	0	-0.901429	1.472599	2.403780
6	0	-2.173423	2.189953	2.856809
6	0	0.285811	2.444604	2.508656
6	0	-0.494448	-0.308738	0.842377

6	0	0.038159	-0.800457	2.222509
6	0	-0.649389	0.184952	3.193199
6	0	-0.438100	-2.251084	2.522114
6	0	-0.147318	-2.778857	3.934586
6	0	1.609036	-0.722240	2.199536
6	0	2.331306	-0.444451	3.526469
17	0	0.651466	-3.054775	-2.456074
77	0	-0.172083	-1.455503	-0.808514
7	0	-1.032302	0.892313	0.977243
6	0	-0.884947	-0.361590	-2.126710
8	0	-1.375431	0.150984	-3.035466
6	0	-1.420380	-2.924839	-0.325633
8	0	-2.180047	-3.776274	-0.211128
1	0	0.771760	1.906040	-2.537887
1	0	1.979905	3.100241	-2.052729
1	0	0.494976	3.616088	-2.875972
1	0	0.041699	5.256561	-1.102043
1	0	1.468115	4.789584	-0.168055
1	0	-0.135052	4.813808	0.594942
1	0	0.767645	2.469970	-0.048592
1	0	-1.656544	4.190992	-2.248881
1	0	-4.044480	3.628299	-2.500420
1	0	-5.004488	1.751844	-1.216634
1	0	-3.180551	-0.350352	1.236424
1	0	-5.124299	-0.609507	-1.121508
1	0	-4.725321	-1.852598	0.072699
1	0	-3.509326	-1.317694	-1.102406
1	0	-4.893370	1.393092	2.027990
1	0	-5.513089	-0.266601	1.932834
1	0	-5.923146	0.908409	0.680841

1	0	-2.409662	3.053304	2.227443
1	0	-2.014583	2.554012	3.878291
1	0	-3.033846	1.519840	2.874347
1	0	1.218871	2.024435	2.127979
1	0	0.433626	2.685376	3.567539
1	0	0.087510	3.381212	1.988516
1	0	-1.612979	-0.236540	3.506459
1	0	-0.068905	0.373132	4.097771
1	0	-1.522378	-2.300885	2.351608
1	0	0.023677	-2.938413	1.803268
1	0	0.921926	-2.936023	4.101289
1	0	-0.643274	-3.746906	4.069222
1	0	-0.519433	-2.107380	4.717090
1	0	1.977879	-1.670797	1.789204
1	0	1.946789	0.039595	1.492339
1	0	2.139346	0.569254	3.894167
1	0	3.409724	-0.518379	3.350896
1	0	2.066252	-1.146782	4.321586
6	0	1.693164	-0.374167	-1.167422
1	0	1.997210	-0.409884	-2.210640
1	0	1.641024	0.634757	-0.782003
1	0	2.321737	-1.040085	-0.554903
53	0	4.518558	0.714190	-0.194886
C-4				

6	0	-1.434039	-3.072715	-2.691081
6	0	-3.669550	-1.984947	-3.032748
6	0	-2.353764	-1.925307	-2.220262
6	0	-2.636691	-1.972180	-0.717883
6	0	-3.225843	-3.148286	-0.227693

6	0	-3.555364	-3.306954	1.111411
6	0	-3.285926	-2.275087	2.002992
6	0	-2.692612	-1.076388	1.587247
6	0	-2.367462	-0.934118	0.207657
6	0	-2.405222	-0.043426	2.684171
6	0	-1.423847	-0.602606	3.740052
6	0	-3.677877	0.436371	3.417853
6	0	-2.918606	1.398189	-0.752597
6	0	-4.337858	1.137039	-0.250361
6	0	-2.927508	1.397078	-2.293964
6	0	-0.665799	0.911332	-0.093818
6	0	-0.786831	2.470261	-0.214485
6	0	-2.318284	2.682391	-0.190573
6	0	-0.160332	3.121205	1.056083
6	0	-0.368074	4.638277	1.175310
6	0	-0.081465	3.024150	-1.510656
17	0	0.944135	-0.505887	-2.301191
77	0	1.228903	-0.005563	0.087534
7	0	-1.873374	0.381665	-0.225045
6	0	-0.775771	4.162920	-2.275781
6	0	1.497013	0.301133	1.910517
8	0	1.683005	0.500511	3.029244
6	0	0.502613	-1.951961	0.612294
53	0	3.808155	-1.220547	0.088646
1	0	-0.466599	-3.052929	-2.187602
1	0	-1.243588	-2.966367	-3.765583
1	0	-1.895281	-4.054495	-2.530441
1	0	-4.117250	-2.984410	-2.977848
1	0	-3.470947	-1.771718	-4.090133
1	0	-4.426292	-1.276992	-2.677062

1	0	-1.827697	-0.996787	-2.446373
1	0	-3.427821	-3.958868	-0.920999
1	0	-4.012870	-4.229137	1.460120
1	0	-3.533151	-2.404462	3.052402
1	0	-1.936468	0.832696	2.229476
1	0	-1.899891	-1.388759	4.337268
1	0	-1.114358	0.193203	4.427644
1	0	-0.526772	-1.030163	3.289800
1	0	-4.422333	0.873385	2.746404
1	0	-3.411031	1.195192	4.163576
1	0	-4.162767	-0.389440	3.950883
1	0	-4.721221	0.165841	-0.575242
1	0	-4.990428	1.912253	-0.669148
1	0	-4.412310	1.192428	0.835695
1	0	-1.922555	1.408952	-2.720349
1	0	-3.461763	2.290625	-2.635961
1	0	-3.456618	0.533735	-2.693555
1	0	-2.653658	2.807540	0.846499
1	0	-2.647970	3.562841	-0.743480
1	0	-0.583953	2.639410	1.947609
1	0	0.914113	2.919908	1.080510
1	0	0.135426	5.184455	0.370914
1	0	0.053534	4.992262	2.123045
1	0	-1.428192	4.917235	1.162979
1	0	0.900239	3.401087	-1.216708
1	0	0.114105	2.201520	-2.205728
1	0	-0.102113	4.516363	-3.065434
1	0	-1.008192	5.020735	-1.635502
1	0	-1.701990	3.846620	-2.764281
1	0	-0.299677	-1.961290	1.346027

1	0	1.346082	-2.525579	0.999556
1	0	0.155294	-2.417731	-0.308363
6	0	2.354841	1.532747	-0.565621
8	0	3.136758	2.290979	-0.915719

TS2

6	0	-0.579003	-3.091967	-2.661829	
6	0	-2.928538	-2.380904	-3.211400	
6	0	-1.710438	-2.108599	-2.297778	
6	0	-2.128679	-2.178237	-0.829381	
6	0	-2.496984	-3.438183	-0.331351	
6	0	-2.947557	-3.614584	0.970630	
6	0	-3.079405	-2.506618	1.800779	
6	0	-2.747112	-1.216787	1.365297	
6	0	-2.216793	-1.070732	0.050732	
6	0	-3.044300	-0.065639	2.334846	
6	0	-2.162688	-0.087467	3.599541	
6	0	-4.529786	-0.066532	2.770439	
6	0	-2.883332	1.192632	-1.069886	
6	0	-4.332766	0.801799	-0.788291	
6	0	-2.638944	1.167787	-2.591740	
6	0	-0.710398	0.926822	-0.109043	
6	0	-0.961380	2.463685	-0.222879	
6	0	-2.491736	2.538490	-0.465978	
6	0	-0.644119	3.079419	1.178531	
6	0	-0.976043	4.572619	1.308292	
6	0	-0.093264	3.154367	-1.340640	
17	0	1.142448	-0.063667	-2.330592	
77	0	1.213464	0.109596	0.182698	
7	0	-1.845605	0.288356	-0.362267	

6	0	-0.762466	4.248618	-2.187894
53	0	3.831279	-0.945331	0.121367
6	0	2.150934	1.727730	0.133656
8	0	2.810973	2.669148	0.201346
1	0	0.322815	-2.916947	-2.071234
1	0	-0.300693	-2.948643	-3.711889
1	0	-0.885268	-4.137647	-2.537884
1	0	-3.255710	-3.424608	-3.129191
1	0	-2.661760	-2.198030	-4.259379
1	0	-3.791381	-1.752123	-2.964035
1	0	-1.324075	-1.110602	-2.504065
1	0	-2.420263	-4.300875	-0.985514
1	0	-3.210181	-4.605514	1.331757
1	0	-3.461295	-2.640921	2.808346
1	0	-2.851796	0.878838	1.821307
1	0	-2.289070	-1.024638	4.154413
1	0	-2.452566	0.732943	4.267810
1	0	-1.101993	0.022686	3.374794
1	0	-5.218857	-0.167987	1.926461
1	0	-4.764570	0.866562	3.296965
1	0	-4.738234	-0.890367	3.462459
1	0	-4.547374	-0.227104	-1.092227
1	0	-4.981413	1.463221	-1.374135
1	0	-4.603206	0.920766	0.261177
1	0	-1.582155	1.280545	-2.844696
1	0	-3.198478	1.994571	-3.044207
1	0	-3.001623	0.245149	-3.045918
1	0	-3.010810	2.666499	0.491252
1	0	-2.792427	3.369485	-1.104021
1	0	-1.204698	2.523597	1.941683

1	0	0.411957	2.934643	1.417825
1	0	-0.360985	5.186178	0.641975
1	0	-0.778526	4.904904	2.333895
1	0	-2.029091	4.785514	1.089918
1	0	0.774521	3.610363	-0.857997
1	0	0.307031	2.392901	-2.015271
1	0	-0.000896	4.711586	-2.826467
1	0	-1.209699	5.043912	-1.581191
1	0	-1.537214	3.852817	-2.852631
6	0	1.111323	-0.482963	1.963150
8	0	1.171077	-0.551518	3.130970
6	0	0.655667	-2.071798	1.015552
1	0	-0.285789	-2.285379	1.513451
1	0	1.496081	-2.637517	1.414964
1	0	0.573245	-2.290057	-0.051431

C-5

6	0	0.542225	-1.893516	3.390183
6	0	2.741144	-0.745361	3.814357
6	0	1.561008	-0.883207	2.825660
6	0	2.066807	-1.264363	1.435485
6	0	2.619810	-2.545078	1.277551
6	0	3.165155	-2.963542	0.071073
6	0	3.198673	-2.084240	-1.006309
6	0	2.668850	-0.792198	-0.917505
6	0	2.063015	-0.405623	0.310408
6	0	2.832240	0.119477	-2.141214
6	0	1.976398	-0.301532	-3.352501
6	0	4.312966	0.205310	-2.582567
6	0	2 294553	2 167114	0 753817

6	0	3.796516	2.017288	0.508764
6	0	2.074404	2.482092	2.248734
6	0	0.219977	1.219669	-0.002853
6	0	0.147880	2.746671	-0.333565
6	0	1.627178	3.206644	-0.146017
6	0	-0.244821	2.858154	-1.837318
6	0	-0.112771	4.266247	-2.438670
6	0	-0.778060	3.657691	0.542310
6	0	-2.292071	3.658422	0.309733
17	0	-1.556261	0.961411	2.429884
77	0	-1.289450	-0.264635	0.329563
7	0	1.467496	0.935108	0.358469
6	0	-2.965198	0.429088	-0.615012
8	0	-3.975310	0.628637	0.004599
6	0	-2.932501	0.583236	-2.132379
53	0	-0.808765	-2.196315	-1.596179
1	0	-0.279884	-2.071681	2.692454
1	0	0.110042	-1.504560	4.318600
1	0	1.007248	-2.860828	3.614237
1	0	3.212534	-1.718412	3.998059
1	0	2.386109	-0.358807	4.777561
1	0	3.521909	-0.072492	3.442700
1	0	1.047520	0.077260	2.761554
1	0	2.618050	-3.226432	2.123006
1	0	3.572404	-3.966410	-0.027739
1	0	3.642069	-2.410288	-1.942462
1	0	2.513573	1.126821	-1.865111
1	0	2.206007	-1.326843	-3.664418
1	0	2.187390	0.363504	-4.199953
1	0	0.907368	-0.261999	-3.135184

1	0	4.990520	0.403661	-1.745825
1	0	4.437008	1.004690	-3.323638
1	0	4.640705	-0.727462	-3.055427
1	0	4.211245	1.155030	1.040572
1	0	4.294987	2.914595	0.892964
1	0	4.046847	1.928693	-0.548075
1	0	1.020785	2.443277	2.532384
1	0	2.451815	3.491713	2.449181
1	0	2.626953	1.792920	2.890497
1	0	2.142991	3.226924	-1.112956
1	0	1.700333	4.210235	0.280468
1	0	0.376332	2.165595	-2.420070
1	0	-1.274436	2.523502	-1.961448
1	0	-0.777635	4.986063	-1.950056
1	0	-0.381682	4.238634	-3.501216
1	0	0.909550	4.656073	-2.372008
1	0	-0.592208	3.444735	1.597162
1	0	-0.418127	4.680084	0.370948
1	0	-2.560590	3.890849	-0.727354
1	0	-2.740115	4.438250	0.938002
1	0	-2.760418	2.717814	0.593818
1	0	-1.932102	0.598159	-2.553966
1	0	-3.500265	1.480094	-2.403129
1	0	-3.452751	-0.294239	-2.534930
6	0	-2.445417	-1.601278	1.079342
8	0	-3.100152	-2.389875	1.591093

TS3

6	0	-1.067342	-2.803491	-3.064478
6	0	-3.533021	-2.617877	-2.649512

6	0	-2.140985	-2.113886	-2.196481
6	0	-1.944655	-2.351251	-0.698444
6	0	-1.879104	-3.693509	-0.291365
6	0	-1.747864	-4.056104	1.042728
6	0	-1.678696	-3.059906	2.008682
6	0	-1.735865	-1.699882	1.674955
6	0	-1.862587	-1.344334	0.300489
6	0	-1.640273	-0.717129	2.845315
6	0	-0.322557	-0.909287	3.629236
6	0	-2.819475	-0.858675	3.835450
6	0	-3.354967	0.748677	-0.222950
6	0	-4.447970	0.100509	0.626858
6	0	-3.795106	0.735519	-1.700641
6	0	-0.970318	0.954579	-0.021033
6	0	-1.530722	2.400511	-0.082791
6	0	-3.028676	2.178493	0.226834
6	0	-0.885978	3.281271	1.025014
6	0	-1.479732	4.687206	1.195903
6	0	-1.213689	2.985087	-1.508695
77	0	0.969040	0.586451	-0.111347
7	0	-1.981152	0.083192	-0.025074
6	0	-2.207111	4.002847	-2.091116
6	0	1.315240	1.163768	1.595282
8	0	1.591675	1.587985	2.644544
1	0	-0.063505	-2.471960	-2.797059
1	0	-1.228546	-2.543534	-4.117702
1	0	-1.118537	-3.896065	-2.984747
1	0	-3.566714	-3.714173	-2.646949
1	0	-3.745313	-2.283881	-3.672679
1	0	-4.344728	-2.273477	-1.999997

1	0	-2.057794	-1.044225	-2.391849
1	0	-1.940724	-4.471703	-1.045923
1	0	-1.703476	-5.104374	1.327752
1	0	-1.573544	-3.341094	3.052058
1	0	-1.650761	0.302883	2.451088
1	0	-0.348458	-1.836928	4.213493
1	0	-0.172846	-0.080679	4.330412
1	0	0.543247	-0.958950	2.968202
1	0	-3.797954	-0.766928	3.355916
1	0	-2.746529	-0.087239	4.611953
1	0	-2.794024	-1.832437	4.338504
1	0	-4.591939	-0.956078	0.379416
1	0	-5.393000	0.622011	0.434841
1	0	-4.234250	0.182460	1.693204
1	0	-3.003412	1.066424	-2.375580
1	0	-4.642826	1.422036	-1.809221
1	0	-4.135153	-0.247597	-2.021086
1	0	-3.181899	2.256739	1.310716
1	0	-3.688562	2.909095	-0.245510
1	0	-0.973380	2.752029	1.983041
1	0	0.184276	3.374693	0.819579
1	0	-1.265392	5.331406	0.337479
1	0	-1.036129	5.164394	2.077688
1	0	-2.566384	4.670202	1.345011
1	0	-0.218291	3.440588	-1.451660
1	0	-1.097674	2.167697	-2.226566
1	0	-1.792473	4.418617	-3.017443
1	0	-2.411067	4.839671	-1.416659
1	0	-3.167825	3.543597	-2.349849
53	0	3.815320	0.004719	-0.323718

17	0	0.766182	0.079113	-2.450342
6	0	2.545081	-1.848394	0.545762
8	0	2.568371	-2.015139	1.711972
6	0	2.121184	-2.750866	-0.572736
1	0	2.923949	-3.489337	-0.704765
1	0	1.962992	-2.201572	-1.498122
1	0	1.204323	-3.262403	-0.260594

C-6

6	0	-0.732619	-3.390408	-2.025219
6	0	-3.013795	-2.891325	-2.958150
6	0	-1.913453	-2.394102	-1.993441
6	0	-2.429320	-2.213736	-0.567099
6	0	-2.918524	-3.366814	0.067290
6	0	-3.362004	-3.353261	1.382495
6	0	-3.289042	-2.169632	2.107174
6	0	-2.812555	-0.981561	1.537658
6	0	-2.405543	-1.003229	0.172189
6	0	-2.714368	0.225064	2.475227
6	0	-1.744421	-0.083543	3.639103
6	0	-4.072523	0.658675	3.069452
6	0	-3.183800	1.046138	-1.225448
6	0	-4.588865	0.785227	-0.680038
6	0	-3.160590	0.683386	-2.722653
6	0	-0.956933	0.972987	-0.340611
6	0	-1.182064	2.440136	-0.786226
6	0	-2.719831	2.489896	-0.994206
6	0	-0.775916	3.414613	0.354970
6	0	-1.168303	4.878628	0.105851
6	0	-0.407942	2.774608	-2.109315

6	0	1.068129	3.175865	-1.983268
17	0	1.117338	-0.544015	-2.106390
77	0	0.785740	0.223838	0.173065
7	0	-2.093827	0.284411	-0.461209
1	0	0.055817	-3.097701	-1.329015
1	0	-0.295295	-3.416195	-3.030051
1	0	-1.063309	-4.406041	-1.774676
1	0	-3.300030	-3.925595	-2.732117
1	0	-2.644825	-2.871965	-3.990976
1	0	-3.927279	-2.288759	-2.911351
1	0	-1.529191	-1.437525	-2.351065
1	0	-2.942669	-4.298848	-0.489110
1	0	-3.743329	-4.260060	1.845393
1	0	-3.603855	-2.165696	3.146495
1	0	-2.307831	1.073611	1.919024
1	0	-2.187130	-0.809408	4.331837
1	0	-1.523312	0.828171	4.205070
1	0	-0.800765	-0.497074	3.277417
1	0	-4.815002	0.907236	2.305594
1	0	-3.933680	1.542466	3.704348
1	0	-4.501464	-0.130949	3.697424
1	0	-4.876519	-0.266698	-0.771853
1	0	-5.301441	1.381420	-1.262305
1	0	-4.684062	1.081010	0.365422
1	0	-2.157384	0.739083	-3.150214
1	0	-3.801428	1.391477	-3.261478
1	0	-3.555762	-0.316521	-2.901310
1	0	-3.200827	2.873762	-0.086266
1	0	-3.015087	3.143764	-1.819938
1	0	-1.246915	3.081817	1.289078

1	0	0.302070	3.348351	0.519371
1	0	-0.697691	5.286021	-0.795608
1	0	-0.847658	5.497198	0.952363
1	0	-2.252380	5.005985	0.001026
1	0	-0.465274	1.915203	-2.783607
1	0	-0.952340	3.590735	-2.602495
1	0	1.196577	4.139352	-1.477948
1	0	1.504026	3.268115	-2.985470
1	0	1.640581	2.421438	-1.435971
6	0	4.798827	-0.036948	-0.542023
8	0	5.471564	0.827372	-0.106394
6	0	4.705244	-0.621172	-1.913112
1	0	4.947842	-1.687898	-1.866804
1	0	5.398868	-0.091542	-2.573594
1	0	3.667973	-0.537249	-2.264095
53	0	3.290270	-1.092735	0.901937
6	0	0.820022	1.033013	1.810361
8	0	0.928046	1.609034	2.820165

CH₃COI

6	0	-1.126438	0.045122	-0.122039
6	0	0.343494	0.217732	-0.398159
53	0	1.578114	0.179957	1.494889
8	0	0.874922	0.361869	-1.448386
1	0	-1.674614	0.071020	-1.068458
1	0	-1.468615	0.844189	0.543040
1	0	-1.291284	-0.906776	0.392398

 $CH_3CO_2CH_3\\$

6	0	-1.802454	-0.523152	-0.000001
6	0	-0.464444	0.175584	0.000045
8	0	0.553230	-0.717585	0.000015
8	0	-0.294574	1.377699	-0.000044
6	0	1.881526	-0.161445	-0.000005
1	0	-2.601048	0.220002	-0.000364
1	0	-1.892366	-1.165322	0.882848
1	0	-1.892056	-1.165899	-0.882458
1	0	2.037379	0.452153	0.891398
1	0	2.553722	-1.019942	-0.000025
1	0	2.037346	0.452168	-0.891404

 $\mathrm{CH}_{3}\mathrm{I}$

6	0	-0.965323	-0.000024	0.298735
53	0	1.217403	0.000043	0.298927
1	0	-1.293658	-0.000031	-0.739037
1	0	-1.293692	0.898485	0.817966
1	0	-1.293483	-0.898865	0.817435

13.TGA curves for C-2 and C-3

Fig.S6 TGA curves for C-2 and C-3

14. References

(S1) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

(S2) R. Sure, J. Antony, S. Grimme, J. Phys. Chem. B 2014, 118, 3431-3440.

Kelly Iii, Roy A., et al. Organometallics 27.2 (2008): 202-210.

(S3) M. J. Turner, S. Grabowsky, D. Jaytilaka, M. A. Spackman, *J. Phys. Chem. Lett.* **2014**, *5*, 4249-4255.

(S4) Z. Li, K. Su, J. Ren, D. Yang, B. Cheng, C. K. Kim, X. Yao, *Green Chem.*, **2018**, 20, 863-872.

(S5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Cli□ord, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 09 (Revision E.01), Gaussion, Inc., Pittsburgh, PA, 2013.