Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

TG-MS: Gas flow rate is 25ml/min, nitrogen is protective gas, O_2/N_2 (25% O_2) is reaction gas, the ratio of the two is 2/3. The heating rate was 10 °C/min. No organic ion fragments were found during the test, the external standard method determines the amount of CO_2 produced by the catalyst carbon deposits oxidation reaction, and then determines the carbon mass percentage in catalyst (wt%, carbon elementary substance). Carbon deposits (mmol, carbon elementary substance) in Table S1 is the amount of carbon elementary substance.

The fresh catalysts were used to catalyzed by a toluene combustion reaction. The reactions were continued for 12 hours. The toluene elimination rates were> 99.5% (reaction conditions: toluene concentration is 1000 mg/m³; GHSV is 5000 h⁻¹; toluene elimination rate> 99.5%; reaction time is 12h). Only residual toluene and CO₂ were detected in the reaction exhaust gas. The carbon deposition of the catalysts after the reaction were measured by TG-MS. Finally, using the CO₂ selectivity were calculated by the results of TG-MS to verify the accuracy of using the CO₂ concentration in the reaction exhaust gas to determine the carbon deposition in the article. The results were shown in Fig. S1 and Table S1. The results show that the carbon balance calculation in the article is correct and the method is feasible.

Fig. S1. TG-MS tests of post-reaction catalysts. (reaction conditions: toluene concentration is 1000 mg/m³; GHSV is 5000 h⁻¹; Toluene elimination rate> 99.5%; reaction time is 12h).

		carbonitue	positsj			
Catalyst	Catalyst	12h	Total	Carbon	Carbon	CO ₂
	mass (g)	reaction	carbon	mass	deposits	selectivity
		toluene	(mmol)	percentage	(mmol,ele-	(%)
		total		in catalyst	mentary	
		feed (g)		(wt% <i>,</i>	substance)	
				TG-MS)		
$Pd-Pt/K_2O-6-\gamma-Al_2O_3$	145.010	8.478	644.085	1.20	145.010	77.49
Pd/γ-Al ₂ O ₃	144.427	8.478	644.085	1.03	123.967	80.75
$Pd-Pt/\gamma-Al_2O_3$	144.256	8.478	644.085	0.92	110.596	82.83
Pd-Pt/CeO ₂ -10-γ-Al ₂ O ₃	144.473	8.478	644.085	0.60	72.237	88.78
$Pd-Pt-0.8/CeO_2-10-\gamma-Al_2O_3$	143.983	8.478	644.085	0.31	37.196	94.22
$Pd-Pt-0.8/CeO_2-60-\gamma-Al_2O_3$	147.150	8.478	644.085	0.14	17.168	97.33

Table S1. Carbon balance calculation (to verify the accuracy of using CO₂ to measure carbon deposits)

The γ -Al₂O₃ support was impregnated with the aluminum nitrate solution, and then dried at 120 °C for 3 h and calcined in a muffle furnace at 600 °C for 2 h. This process was repeated 5 times to obtain γ -Al₂O₃-R support, after which CeO₂ (10wt%) and Pd-Pt (2wt%) were loaded. Preparation of monolithic catalyst: powder catalyst was mixed with water to form a slurry. Then, cordierite honeycomb ceramics (Ø 60 mm, height = 50 mm, 400 holes per square inch, 136 g) were impregnated in the slurry. The suspension remaining in the hole of the cordierite honeycomb ceramics was then blown off by compressed air, dried at 120 °C for 3 h and calcined in a muffle furnace at 500 °C for 2 h (γ -Al₂O₃ in the powder catalysts accounts for 5 wt% of cordierite honeycomb ceramics).

Fig. S2. Conversion of toluene on catalysts and CO₂ concentration at the reactor outlet and the selectivity of CO₂. Monolithic catalyst: \emptyset 60 mm, height = 50 mm, 400 holes per square inch; toluene concentration: 1000 mg/m³; GHSV: 5000 h⁻¹. (The catalyst with reduced pore diameter after the γ -Al₂O₃ support is treated is indicated by Pd-Pt/CeO₂-10- γ -Al₂O₃-R)

Catalyst	Surface	area	Pore	volume	Pore	diameter
	(m²/g)		(cm³/Į	g)	(nm)	
$Pd-Pt/CeO_2-10-\gamma-Al_2O_3$	130.09		0.1911		5.75	
$Pd-Pt/CeO_2-10-\gamma-Al_2O_3-R$	70.39		0.0494		2.81	

Table S2. Nitrogen adsorption-desorption experiment data.

The TEM test results and EDS test results of Pd-Pt-0.8/CeO₂-10- γ -Al₂O₃ and Pd-Pt-0.8/CeO₂-60- γ -Al₂O₃ were shown in Fig. S3. The results show that when CeO₂ loading increases, the easier the CeO₂ agglomerates, the larger the particles. From the EDS results, we can see that Pd tends to be supported on CeO₂ (EDS results show that red dots are also dense where green dots are dense), while Pt is evenly dispersed on CeO₂ and Al₂O₃.

TEM and EDS test of Pd-Pt-0.8/CeO₂-10-γ-Al₂O₃

TEM and EDS test of Pd-Pt-0.8/CeO₂-60- γ -Al₂O₃ Fig. S3. TEM and EDS tests of catalysts.

The frequency calculations were performed to verify the transition state. The results show that every transition state has only one imaginary frequency. The transition states are correct, and the result were listed in Table S3.

Table S3. The imaginary frequency of transition state.

	Disproportionation of CO on Pd ⁰	Oxidation of CO on Pd ⁰	Disproportionation of CO on PdO	Oxidation of CO on PdO (dissociated O)	Oxidation of CO on PdO (lattice oxygen)
Transition state		A A A A A A A A A A A A A A A A A A A			
Imaginary frequency	-321.57 cm ⁻¹	-349.70 cm ⁻¹	-394.69 cm ⁻¹	-539.73 cm ⁻¹	-178.22 cm ⁻¹