Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

1	Supporting information
2	Durable release of SO_4 ⁻ over g-C ₃ N ₄ /ZnO/Fe(III) system mediated by persulfate:
3	Fe(III)/Fe(II) cycling and degradation pathway
4	Shaomin Liu ^{1,2*} , Jianshu Zhang ^{1,2} , Meiling Chen ^{1,2} , Xiaoxiao Wang ^{1,2}
5	1Key Laboratory of Safe and Effective Coal Mining (Anhui University of Science and
6	Technology), Ministry of Education)
7	2School of Earth Science and Environmental Engineering, Anhui University of
8	Science and Technology, Huainan 232001, PR China
9	
10	*To whom correspondence should be addressed.
11	E-mail addresses: <u>shmliu1@163.com</u> (S. Liu)
12	
13	
14	This file includes 1 tables and 4 figures available for further information addressing g-
15	C ₃ N ₄ /ZnO/PS/Fe(III) photocatalytic systems parameters, experimental data and other
16	additional data.

- 18 Figure caption:
- 19 Table.S1 Kinetic fit parameters for RhB degradation by different system
- 20 Fig.S1 Variation of RhB concentration (C/C₀) with reaction time in different
- 21 system. Reaction conditions: RhB (20 mg/L); PS (2.0 mM); Fe(III) (0.05 mM);
- 22 Fe(II) 0.05 mM); temperature keep on 25 °C.
- 23 Fig.S2 (a) Quasi-first-order and (b) Pseudo-second-order kinetic fit of different
- 24 system for degradation of RhB
- 25 Fig.S3 The influence of catalyst dosage on the g-C₃N₄/ZnO/PS/Fe(III) system.
- 26 Reaction conditions: visible light (500 W); PS (2.0 mM); Fe(III) (0.05 mM);
- 27 temperature keep on 25 °C; initial pH 2.9.
- Fig. S4 The possible reasons for the influence of light intensity on the system

32 Table.S1 Kinetic fit parameters for RhB degradation by different system

System	Quasi-first-order kinetic		Pseudo-second-order kinetic	
	$K_1(min^{-1})$	R_1^2	$K_2(min^{-1})$	R_2^2
PS	0.00388	0.99944	0.00204	0.99892
g-C ₃ N ₄ /ZnO	0.0052	0.98826	0.00292	0.99278
g-C ₃ N ₄ /ZnO/PS	0.02084	0.97562	0.01527	0.99524
g-C ₃ N ₄ /ZnO/PS/Fe(III)	0.03311	0.98182	0.03671	0.86956

Fig.S1 Variation of RhB concentration (C/C₀) with reaction time in different
system.

- 40 Reaction conditions: RhB (20 mg/L); PS (2.0 mM); Fe(III) (0.05 mM); Fe(II) 0.05
- 41 mM); temperature keep on 25 °C.

43 Fig.S2 (a) Quasi-first-order and (b) Pseudo-second-order kinetic fit of different

44 system for degradation of RhB

48 Fig.S3 The influence of catalyst dosage on the g-C $_3N_4$ /ZnO/PS/Fe(III) system. Reaction

- 49 conditions: visible light (500 W); PS (2.0 mM); Fe(III) (0.05 mM); temperature keep on 25
- 50 °C; initial pH 2.9.

53 Fig.S4 The Possible reasons for the influence of light intensity on the system