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Characterization of sGO

sGO is characterized by various techniques as shown below.

a) Fourier Transform Infra-Red spectroscopy

In the FT-IR spectrum of GO, vibrations from oxygen functionalities are clear from the
peaks at 3267, 1720, 1160, and 1039 cm™ representing —OH, -C=0, C-OH and —-C-O-C-
stretching respectively. But in sGO, the intensity of those peaks are considerably minimized
pointing to a major removal of oxygen containing functional groups. Thus, peaks
corresponding to —OH and C-OH bonds were absent in sGO while C=0 peak is present with
lower intensity in sGO at 1741 cm™. The peak of C-O-C stretching is totally disappeared
owing to the possible removal of epoxides from GO, forming C-S-C bonds, denoted by peak
at 1210 cm™. In addition, peak at 1370 cm™ can be assigned as S=0O from sGO [1]. These
observations lead to the successful doping of sulfur atoms to GO sheet [2].

80

60 4

40 -

% Transmittance

=0 .s=0C-S
—Go 1741 1370 1210

20

] ] L] | ] I
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm'1)

Fig. S1a: FT-IR spectra of GO and sGO

b) UV-visible Diffuse Reflectance Spectroscopy

Comparison of UV-vis. DRS spectra of GO and sGO convey that the sulfur doping lead to
an increment in absorption intensity as well as improved absorption in visible region,
extending to the near-IR region [3].
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Fig. S1b: UV-vis. DRS spectra of GO and sGO

c) Photoluminescence spectroscopy

The emission intensity of sGO was found very much reduced than GO from
photoluminescence spectra. This indicates a minimalized recombination of charges in sGO
compared to GO, which can be due to the higher conductivity of sGO [4].
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Fig. S1c: PL spectra of GO and sGO

d) X-Ray Diffraction analysis

The XRD peaks at 24.01° and 43.49° represent (002) and (100) planes of sGO [5, 6].
These peaks are absent in GO which has only a single peak at 11° from (001) peak [6].
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Fig. S1d: XRD spectrum of sGO

e) X-ray Photoelectron Spectroscopy analysis

Survey XPS spectrum of sGO represented peaks at 166, 230, 285 and 531 eV
representing S2p, S2s, Cls and O1s, respectively. XPS spectrum of S2p span from 162-172
eV. The spectrum displayed peak at 166.51 eV which can be assigned to C-S-C groups of sGO

[7].
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Fig. Sle: Survey and S2p XPS spectra of sGO
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f) Scanning Electron Microscopy analysis
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The SEM image of sGO clearly shows the presence of sheet like structure.
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Fig. S1f: FESEM image of sGO
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Fig. S2: XRD of composites compared with standard XRD of La(OH)3



100 4
& g a
@
o
=
£
§
c 604
s
[=
—sGO-1L-AgV
——sGO-2L-AgV
404 ——sGO-3L-Ag

1 L] ] L L]
4000 3500 3000 2500 2000 1500
Wavenumber (cm'1)

LI
1000

500

Intensity

sGO- 1L-AgV
sGO- 2L-AgV
sGO- 3L-AgV

A F—

10 20 30

206 {(Degree)

Fig. S3: (a) FT-IR and (b) XRD spectra of 1 %, 2% and 3% La(OH); modified 1% sGO-

Ag3V0,./Ag catalysts
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Fig. S4: SEM image of La(OH)3;

BET surface area analysis of composites

500nm

Results of BET analysis of composites are provided below. Compared to the
precursor, the novel composite sGO-2L-AgV displayed improved surface area as can be seen

from the table.

Table S1: Surface area of composites.

Sample BET Surface area
(m?*/g)
sGO-AgV 8.30
sGO-2L-AgV 10.66
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Fig. S5: BET adsorption—desorption isotherm of the sGO-2L-AgV
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Fig. S6: Structures of (a) methylene blue, (b) rhodamine B, (c) methyl orange, (d) acid red 18,

(e) thiram and (f) 4-chlorophenol
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Fig. S7: Degradation of (a) Rhodamine B, (b) Methyl Orange, and (c) Acid Red 18 by sGO-2L-
AgV
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Fig. S8: Mass spectra of thiram, (a) pure and (b) after 2 h photocatalytic degradation
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Fig. S9: Mass spectra of 4-chlorophenol, (a) pure and (b) after 3 h photocatalytic
degradation




Table S2: Rate constants and degradation (%) of methylene blue by various catalysts

Catalysts

sGO
AgsVO,
sGO-AgV
sGO- 1L- AgV
sGO- 2L- AgV
sGO- 3L- AgV

Rate constant, k
(min)
0.001
0.047
0.109
0.138
0.307
0.196

Degradation in
15 minutes (%)
4.66
31.97
85.30
89.14
99.92
95.95

Table S3: Total organic carbon (TOC) content removal of dyes (after 1 h), thiram (after 2 h)
and 4-chlorophenol (after 3 h) using sGO-2L-AgV photocatalyst

Pollutant

Methylene blue
Rhodamine B

Methyl orange
Acid Red 18

Thiram

4-chlorophenol

TOC removal (%)

98
96
73
70
81
78

Table S4: Comparison of pollutant degradation by sGO-2L-AgV with literature

Catalyst Light source Pollutant removal (%) References
Ag/AgV03/BiOCl, 50 mg Visible light Methylene Blue, 100 mL [8]
Xenon lamp (300 W), | (7 mg/L),
14V, 16 A 93.16% (t=60 min)
BiOCI, 50 mg
Ag/AgV03, 50 mg 29.24%
37.52%
g-C3N,4/Fe30,4/AgsV0,, 0.1 g Visible light Rhodamine B, 250 ml, [9]
LED source (50 W) (t=240 min)
Zn0/Ags;V0,/Fe;0,/0.1 g Visible light Rhodamine B, 250 ml [10]
LED source (50 W) (1x10> M), (t=240 min)
Ag3V0,/Bi,WOg, 35 mg Visible light (A=400 Rhodamine B, 100 ml (10 [11]
nm) mg/L), 91.4% (t>60 min)
Fe304/Zn0/AgsV0,/Agl, 0.1 g | Sunlight Rhodamine B, 250 ml [12]
(1x105 M), ~95% (t=70
min)
Rb,WO03/Ag5V0,, 10 mg Visible light Rhodamine B (10 mg/L), [13]

Xenon lamp (500 W),

92 % (t=120 min)




400-780 nm

Methylene blue, 93%
(t=60 min)

Ag3V04/Zn3(V0,),/Zn,V,07/Zn
0,30mg

Sunlight

Rhodamine B (10 ppm),
94.95% (t=60 min)
Methyl orange (10 ppm),
49.74% (t=300 min)
Orange Il (10 ppm),
77.84% (t=60 min)
Methylene Blue (20
ppm),

93.89% (t=25 min)

[14]

AgsVO,@MIL-125-NH;, 100
mg

LED visible light, 12
W

Rhodamine B, 100 ml (5
mg/L), t> 50 min

[15]

1% sGO-Ags;V0,/Ag, 50 mg

Sunlight, flux = 960
W/m?

Methylene Blue, 100 ml
(10 mg/L) 97% (t=30
min),

Rhodamine B 100 ml (10
mg/L) 95% (t=30 min),
Methyl Orange 100 ml
(10 mg/L) 60% (t=30
min),

Acid Red 18 100 ml (10
mg/L) 49% (t=30 min),
Thiram, 100 ml (20 mg/L)
100% (t=60 min)

[16]

1% sGO-2% La(OH);-
AgsV04/Ag, 50 mg

Sunlight, flux = 960
W/m?2

Methylene Blue, 100 ml
(10 mg/L) 99.95% (t=20
min),

Rhodamine B 100 ml (10
mg/L) 97.70% (t=20 min),
Methyl Orange 100 ml
(10 mg/L) 62.37% (t=20
min),

Acid Red 18 100 ml (10
mg/L) 51.68% (t=20 min),
Thiram, 100 ml (20 mg/L)
100% (t=60 min)
4-chlorophenol, 100 ml
(20 mg/L) 100% (t=180
min)

This work

Band Potentials of Ag;VO, and La(OH);

For a semiconducting material, its valence band potential can be calculated from the

following equation,




Eyp=x-E.+05Eg

In the equation, X denotes the absolute electronegativity of semiconductor, EC
represents the energy of free electrons on the hydrogen scale which is ~4.5 eV and Eg is the
bandgap energy. The value of x is 5.64 eV for AgsVO, and the value of Eg obtained from the
Tauc plot is 2.14 eV. Thus, from the equation, the valence band potential for AgsVO,; was
found as 2.21 eV. The conduction band potential can be found out from the following

equation [17],
Ecg=Eyp-Eg

Thus, 0.07 eV was found as the conduction band potential of AgsVO,.
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Fig. $10: UV-vis. DRS spectrum and Tauc plot of AgsVO,

Similarly, for La(OH)s, x is 5.67 eV and Eg found from the Tauc plot is 4.82 eV. Thus as
per the previous calculations, VB and CB obtained are 3.58 and -1.24 eV, respectively which

are comparable to previous reports [18].
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Fig. S11: UV-vis. DRS spectrum and Tauc plot of La(OH)3
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