Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

In-situ synthesis of Co₂P decorated red phosphorus nanosheets for efficient photocatalytic H₂ evolution

Chenyang Li^a, Mian Fu^a, Yan Wang ^a, Enzhou Liu^{a*}, Jun Fan^a, Xiaoyun Hu^{b*}

^aSchool of Chemical Engineering, Northwest University, Xi'an 710069, P. R. China.

^bSchool of Physics, Northwest University, Xi'an 710069, P. R. China. *e-mail address: ok.208@163.com and hxy3275@nwu.edu.cn

Fig. S1 XRD of different kinds of red phosphorus.

Fig. S2 (a)~(b) Nanostructure of two-dimension honeycomb red phosphorus.

Fig. S3 The rate of photocatalytic H₂ evolution of 2% Co₂P/RP synthesized by different methods.

Characterization techniques

The crystalline structures were identified by a Shimadzu XRD-6000 powder diffractometer. Morphological and structural of the samples were investigated using scanning electron microscopy (SEM, Carl Zeiss SIGMA) and transmission electron microscopy (TEM, Tecnai G2 F20 STWIN). UV-vis diffuse reflectance spectra (DRS) were recorded on a Shimadzu UV-3600 UV/vis/NIR spectrophotometer using BaSO₄ as reference. Photoluminescence (PL) spectra were recorded on a Hitachi-F 7000 fluorescence spectrophotomete. The specific surface areas were surveyed by N₂ adsorption/desorption in the instrument (Quantachrome, SI). X-ray photoelectron spectroscopy (XPS) were carried out using a Kratos AXIS NOVA spectrometer.

Photocatalytic hydrogen production

Photocatalytic hydrogen production was carried out in a top-irradiated reaction vessel connected to an on-line analysis system (Beijing Perfect Light Technology Co. Ltd., China, LabSobar-IIIAG). A 300W Xe lamp equipped was employed as the light source. In a typical process, 30 mg of photocatalyst powder was dispersed in the reactor with 100 mL of aqueous solution, containing 0.35 mol L⁻¹ Na₂SO₃ and 0.15 mol L⁻¹ Na₂S as the sacrificial agent. The temperature of the reaction solution was carefully maintained at 6 °C by a low constant temperature bath (Shanghai hengpin Technology Co. Ltd., China, DC-0506). Prior to irradiation, the reaction system was evacuated for 30 min to eliminate dissolved oxygen. The produced hydrogen was in-situ obtained every 30 min using an online gas chromatograph (GC 7900, Techcomp Shanghai Co. Ltd., China). The photocatalytic hydrogen evolution of Pt/RP was conducted by photo-decomposition. In detail: certain volume of $H_2PtCl_6 \cdot 6H_2O$ (1 g/L) was added to reaction vessel containing 100 ml sacrificial agent, then 30 mg RP was dispersed the mixed solution followed by irradiation for 3 h. To test the stability of the samples, a cycling experiment was performed in which after 3 hours testing, the vacuum was re-extracted and maintained in the same conditions as at the beginning of the experiment, repeat the above measurement activity. More importantly, the residual H_2 was removed by purging with nitrogen gas for 30 min before starting every new cycle.

Photoelectrochemical analyses

Photoelectrochemical analyses, including transient photocurrent (I-t curve, at 0.5 V potential vs. SCE), electrochemical impedance analysis (EIS, at 0.5 V potential vs. SCE), were conducted on an electrochemical workstation (CHI660E) equipped with a typical three electrode cell under 300W Xenon lamp and bubbling with N_2 before measurement, in which the working electrode, counter electrode and reference electrode were photoanode, Pt, and saturated calomel electrode,

respectively. Typically, the working electrodes were fabricated by dripping the mixed solution directly onto an FTO conductive glass surface and naturally drying at 25 °C; that is, 3 mg of sample was added into 3 mL of mixed solution (the volume ratio of ethanol/water is 1:1) and ultrasonically treated several times. Besides, the electrolyte solution and irradiation area was Na_2SO_4 solution (0.5 mol/L, pH = 7.0) and 0.785 cm², respectively.

 Table S1 The photocatalytic systems containing Co2P as a cocatalyst that have been reported in the literature.

Materials	Preparation	Phosphorus	Application	Sacrificial	AQY [%]	Results	Ref.
	method.	source.		agent.			
Co ₂ P/CdS	Solvotherma	Tri-n-	Photocatalytic	DL-mandelic	No	The H_2 production rate can reach up to	1
	1	octylphosphine	water splitting	acid.		19,3 $\mu mol \cdot h^{\text{-1}} \ g^{\text{-1}}$ after 10 h of LED	
	method.	(TOP) and tri-	under visible light			light irradiation and shows a	
		n-	rradiation.			possibility for the utilization of the	
		octylphosphine				holes in VB to synthesize	
		oxide (TOPO).				benzoylformic acid from DL-	
						mandelic acid.	
O-Co ₂ P/CdS	Simple	NaH ₂ PO ₂	Photocatalytic	Lactic acid	22.17	The optimal adding amount of o-Co ₂ P	2
	calcination		water splitting		(420nm)	exhibits the highest H_2 evolution rate	
	method.		under visible light			of 184.48 mmol $g^{-1} h^{-1}$, which is	
			rradiation ($\lambda > 420$			1.43 times higher than CdS/Co ₂ P.	
			nm).				
Co ₂ P/CdS	One-step	NaH ₂ PO ₂ ·H ₂ O	Photocatalytic	Na ₂ S and	23.6	The CdS/Co ₂ P nanocomposites have a	3
	hydrotherma		water splitting	Na ₂ SO _{3.}	(420nm)	mass of active sites and high-	
	lmethod		under visible light			efficiency photocatalytic splitting	
			irradiation			water ability.	
			$(\lambda\!\geq\!420~nm)$				
H-Co ₂ P-CdS	One-step	Red	Photocatalytic	Lactic acid	13.88	The highest photocatalytic H_{2}	4
	hydrotherma	phosphorus	water splitting	and K_2HPO_4	(420nm)	evolution rate of 0.356 mmol $\cdot h^{\text{-1}}$ with	
	lmethod		under visible light			a good photocatalytic stability was	
			irradiation			obtained by the sample of 1.2 mol%	
			$(\lambda \!\geq \! 420 \ nm)$			H-Co ₂ P-CdS, which is 41 times	
						higher than pure CdS	
M ₂ P (M =	Hydrotherm	(NH ₄) ₂ HPO ₄	Photocatalytic	TEOA	No.	Three as-prepared M ₂ P can serve as	5
Fe, Co, and	al and		water splitting			an efficient non-noble metal co-	
Ni)	ultrasound		under visible light			catalyst for improving the H_{2}	
hybridized	assisted		irradiation ($\lambda = 400$,			generation on S-C ₃ N ₄ .	
on S-C ₃ N ₄ .	methods.		440, 480, or 520				
			nm).				
Co ₂ P	Wet-	Tri-n-	Electrocatalysts for	In 1 M	No	The HB-Co ₂ P NCs act as efficient	6
nanocrystals	chemical	octylphosphine	H_2 evolution in both	KOH (or 0.5		HER electrocatalysts, and perform	

with 3D	method.	oxide (TOPO).	alkaline and acidic	$M H_2 SO_4)$		well in both of alkaline and
morphology			media.			acidic media.
1D/2D	A two-step	Tri-	Photocatalytic	TEOA	No	The optimal 3% $\text{Co}_2\text{P/g-C}_3\text{N}_4$ sample ⁷
Co_2P/g - C_3N_4	ultrasonicati	phenylphosphi	water splitting			reveals the best performance for H_{2}
heterojuncti	on method	ne (TPP).	under visible light			generation, attaining a rate of 53.3
on.			rradiation($\lambda > 420$			μ mol h ⁻¹ g ⁻¹ .
			nm)			
Co ₂ P/g-C ₃ N ₄	A simple	Na ₂ HPO ₂	Photocatalytic	TEOA and	No	The maximum H_2 evolution rate of the 8
	grinding		water splitting	K_2HPO_4		g-C ₃ N ₄ -Co ₂ P-0.1M K ₂ HPO ₄
	method.		under visible light			photocatalyst was 27.81 $\mu mo^{\text{-1}}h^{\text{-1}},$
			rradiation,			furthermore, the optimized contents
						of 2 wt % Co_2P and 0.1 mmol
						K ₂ HPO ₄ ,which was about 561 times
						higher than that of pure g-C ₃ N ₄
						nanosheets.

Table S2 The pore diameter and pore volume of different samples.

composites	pore diameter (nm)	pore volume (cm ³ g ⁻¹)
RP	2.586	0.262
2% Co ₂ P/RP	6.308	0.632

References

- S. Cao, Y. Chen, C.-C. Hou, X.-J. Lv and W.-F. Fu, J. Mater. Chem. A, 2015, 3, 6096-6101.
- Y. Chao, J. Zheng, H. Zhang, F. Li, F. Yan, Y. Tan and Z. Zhu, *Chen. Eng.*, *J*, 2018, 346, 281-288.
- 3. Y. He, R. Cui, C. Gao, J. Zhang and X. a. Li, Mol. Catal., 2019, 469, 161-166.
- S. Li, L. Wang, S. Liu, B. Xu, N. Xiao, Y. Gao, W. Song, L. Ge and J. Liu, ACS. Sustainable. Chem. & Eng., 2018, 6, 9940-9950.
- Z. Sun, M. Zhu, X. Lv, Y. Liu, C. Shi, Y. Dai, A. Wang and T. Majima, *Appl. Catal.*, *B*, 2019, 246, 330-336.
- X. Wang, X. Tian, X. Duan, C. Wu, W. Pei, K. Wang, S. Yuan and Q. Wang, *RSC Adv.*, 2019, 9, 20612-20617.
- D. Zeng, W.-J. Ong, Y. Chen, S. Y. Tee, C. S. Chua, D.-L. Peng and M.-Y. Han, Part. Part. Syst. Char., 2018, 35, 1700251.
- R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen and X. Li, ACS. Sustainable. Chem. & Eng., 2017, 6, 816-826.