Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

For

Acetate-catalyzed hydroboration of CO₂ for the selective formation of

methanol-equivalent products

Yuri C. A. Sokolovicz^{a,b}, David Specklin^a, Olalla Nieto Faza,^c Béatrice Jacques,^a

Carlos Silva López,^c João H. Z. dos Santos^b, Henri S. Schrekker^{b,*}, Samuel

Dagorne^{a,*}

^aInstitute of Chemistry, Université de Strasbourg, CNRS, Strasbourg, France.

^bInstitute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,

Brazil.

^c Depto. Química Orgánica, Universidade de Vigo, Facultade de Ciencias Campus As Lagoas, 32004, Ourense, Spain

^{*} Email: <u>dagorne@unistra.fr</u>, <u>henri.schrekker@ufrgs.br</u>

Table of Contents

Figures S1-S2. NMR data for [TBA][OAc] (1)	p. 3
Figures S3-S21. NMR data for catalytic CO_2 hydroboration with pinB–H	рр. 4-14
Figures S22-S27. NMR data for catalytic CO ₂ hydroboration with H ₃ B-SMe ₂	рр.14-17
Figures S28-S35. NMR data for borate 4	pp.18-21
Figures S36-S43. Molecular structures of TS-1 to TS-8 models	
(wB97xD/def2tzvpp//B3LYP/6-31G*)	рр. 22-25
Figure S44. DFT-estimated mechanism (wB97xD/def2tzvpp//B3LYP/6-31G*) of CO ₂ hydroboration to model A' through the formation of acetate-bridged dinuclear boron model VI'.	p. 26

Figure S2. ¹³C NMR spectrum (C_6D_6) of [TBA][OAc] (1).

Figure S3. ¹H NMR spectrum after the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (5 mol%). Conditions: C_6D_6 ; T = 90 °C; Time: 26 h; Borane conversion (82% conv) to a 11/1/4.7 HCO₂Bpin/H₂C(OBpin)₂/MeOBpin mixture. The residual C_6D_6 peak was used as an internal standard.

Figure S4. ¹¹B NMR spectrum after the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (5 mol%). Conditions: C_6D_6 ; T = 90 °C; Time: 26 h; Borane conversion: 82%.

Figure S5. ¹H NMR monitoring data of the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (5 mol%) as a function of time. Conditions: C_6D_6 ; T = 90 °C. The residual C_6D_6 peak was used as an internal standard. *: HCO_2Bpin ; °: $H_2C(OBpin)_2$; °°: MeOBpin.

Figure S7. ¹H NMR spectrum after the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C_6D_6 ; T: 90 °C; Time: 2 h; Borane conversion: 40%.

Figure S8. ¹¹B NMR spectrum after the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C_6D_6 ; T: 90 °C; Time: 2 h; Borane conversion: 40%.

Figure S9. ¹H NMR spectrum after the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C_6D_6 ; T: 90 °C; Time: 20 h; Borane conversion: 96 %.

Figure S10. ¹¹B NMR spectrum after the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C_6D_6 ; T: 90 °C; Time: 20 h; Borane conversion: 96 %. Compounds A, B and C correspond to hydroboration products HCO₂Bpin (**A**), H₂C(OBpin)₂ (**B**) and MeOBpin (**C**), respectively.

Figure S11. ¹H NMR spectrum after the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C_6D_6 , T = 90 °C, 20 h; Borane conversion: 94 %. Internal standard: hexamethylbenzene.

Figure S12. ¹³C NMR spectrum after the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C_6D_6 , T = 90 °C; 46 h; Borane conversion: 94%. Internal standard: hexamethylbenzene.

Figure S13. ¹¹B NMR spectrum after the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C_6D_6 , T = 90 °C, 46 h; Borane conversion: 94%; Internal standard: hexamethylbenzene.

5.5 5.0 4.5 4.0 3.5 3.0 2.5 6.5 6.0 2.0 1.5 1.0 0.5 8.0 7.5 7.0 Figure S14. ¹H NMR monitoring spectra of the reduction of CO₂ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C_6D_6 , T = 90 °C. Internal standard: hexamethylbenzene.

Figure S15. Blow-up of the ¹H NMR monitoring spectra of the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C_6D_6 , T = 90 °C. Internal standard: hexamethylbenzene.

Figure S16. ¹H NMR spectrum of the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.1 mol%) under solvent-free conditions after complete conversion to MeOBpin. Conditions: T = 90 °C, 19 h. Internal standard: hexamethylbenzene.

Figure S17. ¹¹B NMR spectrum of the reduction of CO_2 in the presence of HBpin and [TBA][OAc] (0.1 mol%) under solvent-free conditions after complete conversion to MeOBpin. Conditions: T = 90 °C, 19 h. Internal standard: hexamethylbenzene.

Figure S18. ¹H NMR spectrum of the reduction of CO_2 in the presence of HBpin and NaOAc (0.1 mol% *vs.* H-Bpin). Conditions: C_6D_5Br , 120 °C, 65 h, Borane conv: 96% (hexamethylbenzene, internal standard).

Figure S19. ¹¹B NMR spectrum of the reduction of CO_2 in the presence of HBpin and NaOAc (0.1 mol% *vs.* H-Bpin). Conditions: C_6D_5Br , 120 °C, 65 h. Borane conv: 96%.

Figure S20. ¹H NMR spectrum of the reduction of CO_2 in the presence of HBpin and KOAc (0.1 mol% *vs.* H-Bpin). Conditions: C_6D_5Br , 120 °C, 65 h. Borane conversion: 94%. Internal standard: hexamethylbenzene.

Figure S21. ¹¹B NMR spectrum of the reduction of CO_2 in the presence of HBpin and KOAc (0.1 mol% *vs.* H-Bpin). Conditions: C_6D_5Br , 120 °C, 65 h, 94% conversion to *Me*OBpin.

Figure S22. ¹H NMR spectrum of the reduction of CO_2 by H_3B -SMe₂ catalyzed by [TBA][OAc] (10 mol% *vs.* BH₃-SMe₂). Conditions: C_6D_6 , RT, 17 h. C_6Me_6 (δ 2.12) was used as an internal standard. Quantitative conversion to a 70/30 (MeOBO)₃/B(OMe)₃ mixture.

Figure S23. ¹¹B NMR spectrum of the reduction of CO₂ by H_3B -SMe₂ catalyzed by [TBA][OAc] (10 mol% *vs.* BH₃-SMe₂). Conditions: C₆D₆, RT, 17 h. C₆Me₆ was used as an internal standard. Quantitative borane conversion to a 70/30 (MeOBO)₃/B(OMe)₃ mixture.

Figure S24. ¹H NMR spectrum of the reduction of CO_2 by H_3B -SMe₂ catalyzed by [TBA][OAc] (1 mol% *vs.* BH₃-SMe₂). Conditions: C_6D_6 , RT, 48 h. C_6Me_6 was used as an internal standard. 68% borane conversion to reduction product (MeOBO)₃.

Figure S25. ¹¹B NMR spectrum of the reduction of CO₂ by H_3B -SMe₂ catalyzed by [TBA][OAc] (1 mol% *vs.* BH₃-SMe₂). Conditions: C₆D₆, RT, 48 h. 68% borane conversion to reduction product (MeOBO)₃.

Figure S26. ¹H NMR spectrum of the reduction of CO₂ by H₃B-SMe₂ catalyzed by [TBA][OAc] (0.1 mol% *vs.* BH₃-SMe₂). Conditions: C₆D₆, 60 °C, 20 h. C₆Me₆ was used as an internal standard. 75 % borane conversion to reduction product (MeOBO)₃.

Figure S27. ¹¹B NMR spectrum of the reduction of CO₂ by H_3B -SMe₂ catalyzed by [TBA][OAc] (0.1 mol% *vs.* BH₃-SMe₂). Conditions: C₆D₆, 60 °C, 20 h. C₆Me₆ was used as an internal standard. 75 % borane conversion to reduction product (MeOBO)₃.

NMR data for stoichiometric monitoring reactions: 1/1 [TBA][OAc]/pinB–H; 1/1/1 [TBA][OAc]/pinB–H/CO₂ (1.5 atm)

Figure S28. ¹H NMR spectrum (C_6D_6) of the stoichiometric reaction between [TBA][OAc] and HBpin after 1h at room temperature.

Figure S29. ¹¹B NMR spectrum (C_6D_6) of the stoichiometric reaction between [TBA][OAc] and HBpin (1 h, RT).

Figure S31. ¹H NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO₂, consistent with the complete formation of the CO₂ insertion product [pinB(OAc)(O₂CH)]⁻ (**4**).

Figure S32. ¹H NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO₂, consistent with the complete formation of the CO₂ insertion product [pinB(OAc)(O₂CH)]⁻ (**4**).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S33. ¹³C NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO₂, consistent with the complete formation of the CO₂ insertion product [pinB(OAc)(O₂CH)]⁻ (**4**).

Figure S34. 2D HSQC NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO₂, consistent with the complete

Figure S35. 2D HMBC NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO₂, consistent with the complete formation of the CO₂ insertion product [pinB(OAc)(O₂CH)]⁻ (4).

Figure S36. Molecular structure of **TS-1** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S37. Molecular structure of **TS-2** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S38. Molecular structure of **TS-3** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S39. Molecular structure of **TS-4** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S40. Molecular structure of **TS-5** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S41. Molecular structure of **TS-6** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

) в С О

Figure S42. Molecular structure of **TS-7** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S43. Molecular structure of **TS-8** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S44. DFT-estimated mechanism (wB97xD/def2tzvpp//B3LYP/6-31G*, benzene) of acetate-catalyzed CO_2 hydroboration to model **A'** through the formation of acetate-bridged dinuclear boron model **VI'**. The values in parenthesis correspond to the energy barriers.