Supplementary Information

for

Path of electron transfer created by S-doped NH_2 -UiO-66 bridged $ZnIn_2S_4/MoS_2$ nanosheet heterostructure for boosting photocatalytic hydrogen evolution

Qi Ran^a, Zebin Yu^{a,*}, Ronghua Jiang^b, Lun Qian^a, Yanping Hou^{a,c}, Fei Yang^d, Fengyuan

Li^a, Mingjie Li^a, Qianqian Sun^a, Heqing Zhang^a

^a School of Resources, Environment and Materials, Guangxi University, Nanning

530004, PR China

^b School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan

512005, P.R. China

^c Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road,

Nanning 530007, China

^d Guangzhou Institution Energy Testing, Guangzhou 510170, Guangzhou, P. R. China

* Corresponding author: Tel.: + 8613877108420; E-mail: yuzebin@gxu.edu.cn (Z. Yu)

Fig. S1 (a) PXRD patterns of MoS_2 and MS/ZU samples, (b) FT-IR spectra of NU66 sample.

Fig. S2 FE-SEM images of (a) MS/ZU-1, (b) MS/ZU-3; (c) Elemental mapping images of MS/ZIS sample.

Fig. S3 XPS spectra of MS/ZU-2 (a) survey spectra, (b) O 1s, (c) N 1s, (d) Mo 3d spectra.

Fig.S4 UV-vis diffuse reflectance spectra of the synthesized MS/ZU samples.

Fig. S5 The SEM image of used MS/ZU-2 sample.

	-		
Samples	$S_{BET}(m^2 g^{-1})$	Pore volume (cm ³ g ⁻¹)	Average pore size
			(nm)
NU66	653.5	0.231	2.665
ZIS	102.9	0.159	18.639
MS/ZU-2	131.1	0.226	18.569

Table S1 The BET surface area, pore volume and average pore size of ZIS, NU66 and MS/ZU-2.

Table S2 the ZIS, MS/ZIS and MS/ZU-2 samples are fitted with R_s , R_{ct} and constant phase elements (CPE).

Sample	R _s (Ω)	R _{ct} (Ω)	CPE (F, 10 ⁻⁴)	
ZIS	8.961	1220	2.309	
MS/ZIS	10.82	580	1.412	
MS/ZU-2	9.704	403.8	2.245	

Samples	ZIS	MS/ZIS	MS/ZU-2	
t1 (ns)	124.7	124.6	124.5	
A1 (%)	36.52	22.78	17.09	
t2 (ns)	27.89	26.29	21.98	
A2 (%)	63.48	77.22	82.91	
tA (ns)	97.59	83.61	77.21	
K _{ET (} 10 ⁶ s ⁻¹)	—	1.7	2.7	
η _{inj} (%)	—	14.3	20.9	

Table S3 TRPL decay spectra of samples

Photocatalysts	Catalyst, Sacrificial	Hydrogen	Light Course	Reference
	agents	production rate	Light Source	
ZnIn ₂ S ₄ /				
UiO-66-NH ₂	40 mg, 10% TEOA	5.69 mmol g ⁻¹ h ⁻¹	λ > 420 nm	Our work
/5%-MoS ₂				
	50 mg, 0.25 M			
MoS ₂ /ZnIn2S ₄	Na_2SO_3 and 0.35	3.89 mmol g ⁻¹ h ⁻¹	λ > 420 nm	1
	M Na ₂ S			
ZnIn ₂ S ₄ / NH ₂ -MIL-125	50 mg, 0.25 M			
	Na_2SO_3 and 0.35	2.21 mmol g ⁻¹ h ⁻¹	λ > 420 nm	2
	M Na₂S			
ZnIn ₂ S₄/UiO-66- NH ₂	20 mg, 0.25 M			
	Na_2SO_3 and 0.35	2.19 mmol g ⁻¹ h ⁻¹	λ > 420 nm	3
	M Na ₂ S			
	50 mg, 50 ml		λ > 420 nm	
@7nIn-S.	water with 10 ml	2.78 mmol g ⁻¹ h ⁻¹⁻		4
@21111 ₂ 5 ₄	TEOA			
TiO ₂ /ZnIn ₂ S ₄	100 mg, 0.25 M		300 W Xe-	
	Na_2SO_3 and 0.35	0.35 mmol g ⁻¹ h ⁻¹⁻	lamp with a cutoff	5
	M Na ₂ S		filter	
$MoS_2/ZnIn_2S_4$	36 ml water with 4		300 W Xe lamp	
	ml lactic acid	4.97 mmol g ⁻¹ h ⁻¹	with a UV cutoff	6
	ini lactic acia		filter.	
NiS/ ZnIn ₂ S ₄	1.5 mg, 5 mL			
	water with 50%	5 μmol·h ⁻¹	λ = 420 nm	7
	lactic acid			

Table S4 Photocatalytic hydrogen evolution over the reported ${\sf ZnIn_2S_4}$ composites

Scheme. 1 Schematic representation of the formation process of $ZnIn_2S_4/NH_2$ -UiO-66 /MoS₂ sample.

References

- 1. Z. Zhang, L. Huang, J. Zhang, F. Wang, Y. Xie, X. Shang, Y. Gu, H. Zhao and X. Wang, *Applied Catalysis B: Environmental*, 2018, **233**, 112-119.
- 2. H. Liu, J. Zhang and D. Ao, *Applied Catalysis B: Environmental*, 2018, **221**, 433-442.
- 3. C. Zhao, Y. Zhang, H. Jiang, J. Chen, Y. Liu, Q. Liang, M. Zhou, Z. Li and Y. Zhou, *The Journal of Physical Chemistry C*, 2019.
- 4. B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma and G. Yang, *Applied Catalysis B: Environmental*, 2018, **220**, 542-552.
- 5. N. Wei, Y. Wu, M. Wang, W. Sun, Z. Li, L. Ding and H. Cui, *Nanotechnology*, 2018, **30**, 045701.
- 6. L. Huang, B. Han, X. Huang, S. Liang, Z. Deng, W. Chen, M. Peng and H. Deng, *Journal of Alloys and Compounds*, 2019, **798**, 553-559.
- 7. A. Yan, X. Shi, F. Huang, M. Fujitsuka and T. Majima, *Applied Catalysis B: Environmental*, 2019, **250**, 163-170.