Supplementary information

Photobiocatalytic H₂ evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant *Escherichia coli*

Nuttavut Kosem^{a,b,*}, Yuki Honda^c, Motonori Watanabe^a, Atsushi Takagaki^b,
Zahra Pourmand Tehrani^d, Fatima Haydous^d, Thomas Lippert^{a,d,e}, Tatsumi Ishihara^{a,b}

^a International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University, 744

Motooka, Nishi-ku, Fukuoka 819-0395, Japan

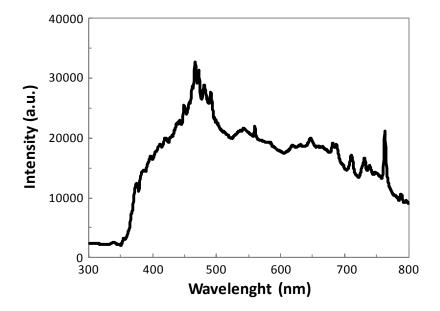
^b Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka,

Nishi-ku, Fukuoka 819-0395, Japan

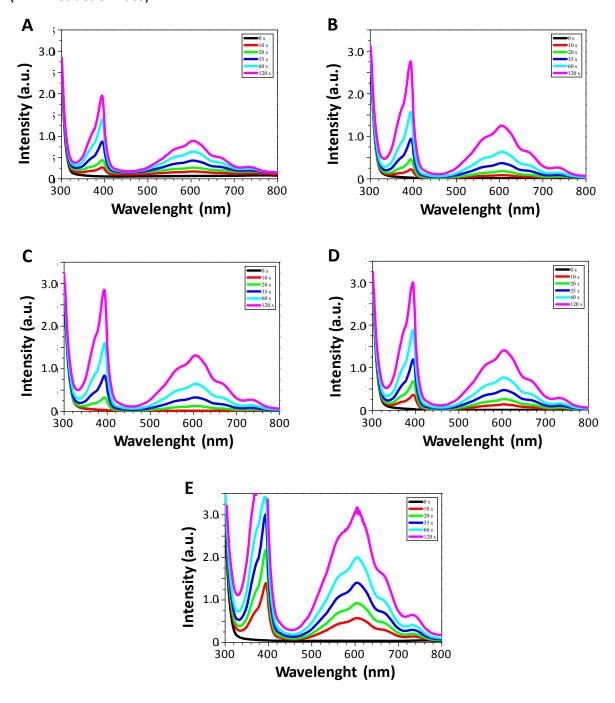
^c Department of Chemistry, Biology and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan

d Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH

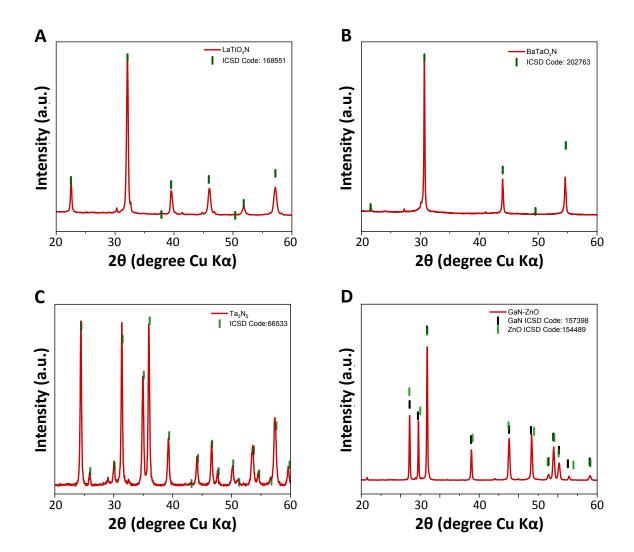
Zürich, CH-8093, Zürich, Switzerland


^e Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland

*E-mail of Corresponding author (N. Kosem)


kosem k@i2cner.kyushu-u.ac.jp

Tel: +81 92 802 6707


Fig. S1 Spectral distribution of a 300-W xenon lamp (Model: CX-04E with an R300-3J lamp housing, INOTEX Co., LTD., Japan) was utilized as a full arc light source for the results in Fig. 1, Fig. 4, Fig. 7 and Fig. S2. In addition, the results of Fig. 8 under visible-light irradiation were obtained by using the xenon lamp equipped with a cut-off filter $\lambda \ge 422$ nm (Model: LUO422, Asahi Spectra, Japan).

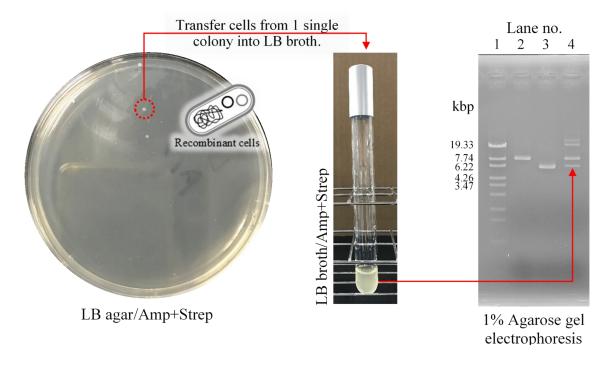

Fig. S2 UV-Vis spectrum of photocatalytic reduced MV*+ by different oxynitrides in the presence of 10% TEOA pH 8 and 5 mM methyl viologen (MV²+) irradiated by a full arc light source of 1.7 W/cm² using a 300-W xenon lamp (CX-04E with an R300-3J lamp housing, INOTEX Co., LTD., Japan): A) TEOA+MV²+ only as a negative control, B) LaTiO₂N, C) BaTaO₂N, D) Ta₃N₅ and E) GaN:ZnO. Amount of reduced MV*+ was calculated from the absorbance at 605 nm using a molar conversion coefficient, ε , of 1.3 × 10⁴ M⁻¹.cm⁻¹. The analysed results were presented as shown in **Fig. 1A** (amount of reduced MV*+ in a function of time) and **Fig. 1B** (MV²+ reduction rate).

Fig. S3 XRD patterns of A) LaTiO₂N, B) BaTaO₂N, C) Ta₃N₅ and D) GaN:ZnO were performed using the powder diffraction method (RINT2500HLR+, Rigaku Corporation).

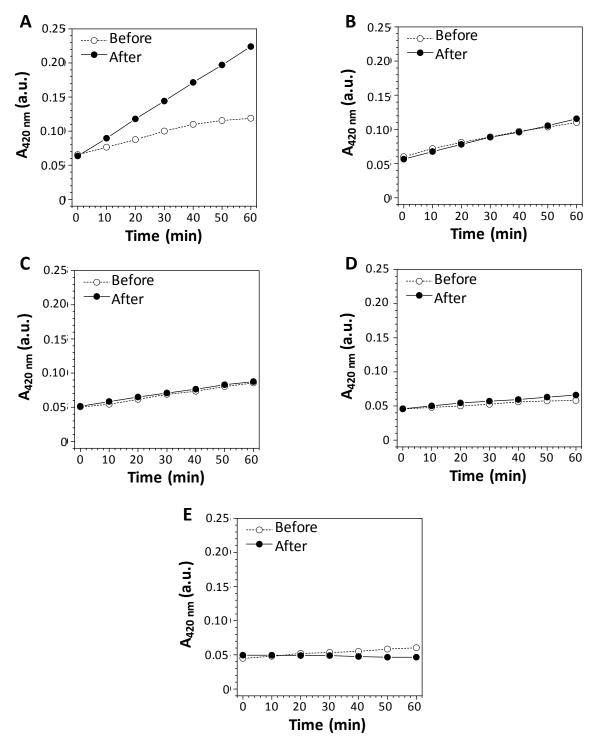


Fig. S4 Strategies for [FeFe]-hydrogenase gene transformation from *C. acetobutylicum* into host cells *E. coli* BL21(DE3) (Hyd⁺ *E. coli*). Recombinant cells were cultivated in selective LB medium including ampicillin (100 μg/mL) and streptomycin (40 μg/mL). After plasmid extraction process by illustraTM plasmidPrep Mini Spin Kit (GE Healthcare), 1% agarose gel electrophoresis confirms the presence of transformed plasmids for [FeFe]-hydrogenase expression as shown on the following Lane no.: 1) λ /Sty I digest Marker, 2) pEHydEA standard, 3) pCHydFG standard, and 4) both pEHydEA and pCHydFG plasmids extracted from Hyd⁺ *E. coli*.

After co-transformation of pEHydEA and pCHydFG plasmids in host cells, Hyd⁺ *E. coli* was cultivated and used as biocatalyst in the experiments as shown in **Fig. 6**, **Fig. 7** and **Fig. 8B**.

Fig. S5 Cytotoxicity of each component on bacterial cell integrity: A) 10% (v/v) TEOA pH 8, B) 5 mg GaN:ZnO, C) 5 mM MV²⁺, D) Water and E) all components under light irradiation. Bacterial cell lysis was determined by β-galactosidase (β-gal) assay based on the activity of extracellular β-galactosidase released as an indicator of cell membrane damage.¹

1. K. L. Griffith and R. E. Wolf, Jr., Biochem. Biophys. Res. Commun., 2002, **290**, 397–402.

The influence of each component of the photobiocatalytic system on the bacterial cell integrity was determined by β-gal assay. The different components, GaN:ZnO (Fig. S5 B), MV²⁺ (Fig. S5 C), water (Fig. S5 D) and all components under irradiation (Fig. S5 E) have no effects on bacterial cells as evidenced by the same absorbance level detected before and after 1 h exposure. It was found that only 10% TEOA pH 8 (Fig. S5 A) showed an increase at the 420-nm absorbance determination after 1 h exposure indicating the release of β -galactosidase caused by cell membrane damage. However, the complete system of photobiocatalytic H₂ production remains continued for up to 12 h as shown in Fig. 7B, indicating that [FeFe]-hydrogenase still functions efficiently. This finding highlights the effect of each component, including GaN:ZnO, MV²⁺ and water, on recombinant *E. coli*, in order to extend hydrogenase activity and improve production efficiency for experiments. H_2 long-term

Bandpass filters	Light power	Area	^a E _{Total}	^b Е _Р	$^{c}N_{P}=E/E_{P}$	^d Rate of incident photon
350 nm	0.0034 W.cm ⁻²	2.7 cm ²	0.0092 J.s ⁻¹	5.679 × 10 ⁻¹⁹ J	$0.16 \times 10^{17} \text{ s}^{-1}$	0.0266 × 10 ⁻⁶ mol.s ⁻¹
390 nm	0.0040 W.cm ⁻²	2.7 cm ²	0.0107 J.s ⁻¹	$5.097 \times 10^{-19} \mathrm{J}$	$0.21 \times 10^{17} \text{s}^{-1}$	$0.0349 \times 10^{-6} \text{ mol.s}^{-1}$
420 nm	0.0023 W.cm ⁻²	2.7 cm ²	0.0061 J.s ⁻¹	$4.733 \times 10^{-19} \mathrm{J}$	$0.13 \times 10^{17} \text{ s}^{-1}$	$0.0214 \times 10^{-6} \text{ mol.s}^{-1}$
470 nm	0.0051 W.cm ⁻²	2.7 cm ²	0.0138 J.s ⁻¹	$4.229 \times 10^{-19} \mathrm{J}$	$0.33 \times 10^{17} \text{ s}^{-1}$	0.0540 × 10 ⁻⁶ mol.s ⁻¹
500 nm	0.0034 W.cm ⁻²	2.7 cm ²	0.0092 J.s ⁻¹	3.975 × 10 ⁻¹⁹ J	$0.23 \times 10^{17} \text{ s}^{-1}$	0.0384 × 10 ⁻⁶ mol.s ⁻¹
t band pass filters	for AQY analysis.					

^a E_{Total} indicates the total energy of incident photon, E_{Total} (W or J s⁻¹) = Power (W cm⁻²) × Area (cm²);

 b E_P indicates the energy of one photon, E_P (J) = hc/λ , where h is the Planks constant = 6.63×10^{-34} J s, c is the speed of light = 2.998×10^8 m s⁻¹ and λ is wavelength (m);

^c N_P is the number of incident photon, N_P (s⁻¹) = E_{Total} (J s⁻¹) / E_P (J);

^d Rate of incident photon (mol s⁻¹) = N_P / Avogadro number = N_P (s⁻¹) / 6.022 ×10²³ mol⁻¹.

Table S2 MV²⁺ reduction rate and apparent quantum yield (AQY) analysis of GaN:ZnO and P-

Bandpass filters	GaN:ZnO		P-25		
	Rate of MV reduction	^a AQY%	Rate of MV reduction	^a AQY%	
350 nm	0.5 × 10 ⁻³ mol s ⁻¹	1.88 %	12.0 × 10 ⁻³ mol s ⁻¹	45.11 %	
390 nm	$0.4 \times 10^{-3} \text{ mol s}^{-1}$	1.15 %	$3.5 \times 10^{-3} \text{ mol s}^{-1}$	10.03 %	
420 nm	$0.2 \times 10^{-3} \text{ mol s}^{-1}$	0.93 %	$0.04 \times 10^{-3} \text{ mol s}^{-1}$	0.19 %	
470 nm	$0.2 \times 10^{-3} \text{ mol s}^{-1}$	0.37 %	$0.02 \times 10^{-3} \text{ mol s}^{-1}$	0.04 %	
500 nm	$0.1 \times 10^{-3} \text{ mol s}^{-1}$	0.26 %	$0.03 \times 10^{-3} \text{ mol s}^{-1}$	0.08 %	
25.					

The results in Table S1 and S2 were obtained from the experiments under monochromatic light source of desired wavelengths and used to support data in **Fig. 5**. To avoid thermochromic effect, the reaction tubes were illuminated by using a heatless xenon lamp (MAX-303, Asahi Spectra) equipped with narrow bandpass filters (350, 390, 420, 470 and 500 nm) for AQY analysis.