Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Adjustable Anchoring of Ni/Co Cations by Oxygen-Containing Functional Groups on Functionalized Graphite Paper and Accelerated Mass/Electron Transfer for Overall Water Splitting

Yiyi Huang, ^a Lei Sun, ^b Zebin Yu, ^{*a} Ronghua Jiang, ^c Jun Huang, ^d Yanping Hou, ^a Fei Yang, ^e Boge Zhang, ^a Runzhi Zhang, ^a and Yalan Zhang ^a

- a. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China.
- b. School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China.
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005,
 P. R. China.
- d. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, P. R. China.
- e. Guangzhou Institution Energy Testing, Guangzhou 510170, P. R. China.

Corresponding author: Zebin Yu. Tel./fax.: + 8613877108420

E-mail: xxzx7514@hotmail.com (Z.

Yu)

Figure of the content

Figure S1. XPS analysis of O 1s spectra: (a) FGP_{0.48}, (b) FGP_{0.35}, (c) FGP_{0.44}, and (d) FGP_{0.41}.

Figure S2. Raman spectra of FGP_{0.48}, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41} in the wavenumber region from 1000 to 3000 cm⁻¹.

Figure S3. FE-SEM images of FGP_{0.48} (a and b), FGP_{0.35} (c and d), FGP_{0.44} (e and f), and FGP_{0.41} (g and h).

Figure S4. CV curve of (a) FGP_{0.48}, (b) FGP_{0.35}, (c) FGP_{0.44}, and (d) FGP_{0.41} under different scan rates.at a voltage range of 0.884 V-1.004 V (vs. RHE). (e) Plots of current density difference (Δ j) at 0.944 V (vs. RHE) against different scan rates for calculation of C_{dl}.

Figure S5. (a) EIS plots of $FGP_{0.48}$, $FGP_{0.35}$, $FGP_{0.44}$, and $FGP_{0.41}$ at 0.924 V (vs. RHE). Inset: the enlarged EIS plots at the high-frequency region. (b) The resistivity comparison of $FGP_{0.48}$ and $FGP_{0.44}$.

Figure S6. Photoluminescence (PL) spectra for NCS-NCO/FGP_{0.44}.

Figure S7. CV curve of NCS-NCO/FGP_{0.48} (a), NCS-NCO/FGP_{0.35} (b), NCS-NCO/FGP_{0.44} (c), NCS-NCO/FGP_{0.41} (d), and NCO/FGP_{0.44} (e) under different scan rates.

Figure S8. Raman spectra of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, and NCS-NCO/FGP_{0.41} with their D and G peaks.

Figure S9. The comparison of C_{dl} from recent report carbon-based bifunctional electrocatalysts and NCS-NCO/FGP_{0.44}.

Figure S1. XPS analysis of O 1s spectra: (a) FGP_{0.48}, (b) FGP_{0.35}, (c) FGP_{0.44}, and (d) FGP_{0.41}.

The surface states of O species under different exfoliated times demonstrated in Fig. S1. Firstly, FGP_{0.48} electrode corresponds to three peaks of hydroxyl groups/surface-adsorbed O (531.0 eV), O=C-O groups (532.2 eV), and absorbed H₂O (533.4 eV), respectively.¹⁻³ After electrochemical exfoliating, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41} electrodes correspond to three peaks of C=O (531.3-531.9 eV), O=C-O groups (532.3-532.8 eV), and absorbed H₂O (533.2-534.0 eV), respectively.⁴ Obviously, this is consistent with the results of the XPS spectra of C 1s, which further confirms that the functionalized graphite paper electrode successfully introduced the oxygen-containing functional group.

Figure S2. Raman spectra of FGP_{0.48}, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41} in the wavenumber region from 1000 to 3000 cm⁻¹.

To analyze the graphitization degree and defect degree of the graphite catalysts, the vibrational peaks of D-band, G-band, and 2D-band at ~1350, ~1580, and ~2670 cm⁻¹ were measured. The D-band corresponds to the vibration of sp³-hybridized carbon atoms in disordered and defective regions, while G-band belongs to the E_{2g} vibration mode of sp² carbon atom. Thus, using the I_D/I_G ratio can qualitatively evaluate the graphitization sequence and defects of carbonaceous materials. The 2D waveband is a two-phonon resonance mode, and its strength reflects the stacking degree of graphene.⁵

Figure S3. FE-SEM images of FGP_{0.48} (a and b), FGP_{0.35} (c and d), FGP_{0.44} (e and f), and FGP_{0.41} (g and h).

Figure S4. CV curve of (a) FGP_{0.48}, (b) FGP_{0.35}, (c) FGP_{0.44}, and (d) FGP_{0.41} under different scan rates.at a voltage range of 0.884 V-1.004 V (vs. RHE). (e) Plots of current density difference (Δ j) at 0.944 V (vs. RHE) against different scan rates for calculation of C_{dl}.

The C_{dl} of the FGP electrodes were calculated from the results of the CV scan, and the ECSA values were calculated (Figure S4a-e). The calculated C_{dl} of the FGP electrodes are: 30, 42, 53, 51 mF cm⁻², and their corresponding ECSA are: 750, 1050, 1325, 1275 cm².

Figure S5. (a) EIS plots of $FGP_{0.48}$, $FGP_{0.35}$, $FGP_{0.44}$, and $FGP_{0.41}$ at 0.924 V (vs. RHE). Inset: the enlarged EIS plots at the high-frequency region. (b) The resistivity comparison of $FGP_{0.48}$ and $FGP_{0.44}$.

The EIS of FGP electrodes were measured to characterize their conductivity and Fig. S5a shows their Nyquist plots. Obviously, $FGP_{0.44}$ has the largest slope and the smallest X-axis intercept (the inset of Fig. S5a), showing its optimal electron transport process and conductivity.⁶ The total impedance values of FGP_{0.48}, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41} after fitting are: 1.189, 1.092, 0.943, and 2.439 Ω , respectively. The larger impedance value of FGP_{0.41} may be due to the large number of functional groups adsorbed on the exfoliated graphene surface during the electrochemical process, which results in a larger contact resistance between the electrolyte and the graphene so that it shows an increased resistance value. Besides, the resistivities of the FGP_{0.48} and FGP_{0.44} electrodes were detected by a four-point probe measurement (Fig. S5b). The results show that the resistivity of the FGP after exfoliating decreased from 2.14×10^{-4} to 1.36×10^{-4} $\Omega \cdot m$, showing the increased electrical conductivity of the functionalized graphene.

Figure S7. CV curve of NCS-NCO/FGP_{0.48} (a), NCS-NCO/FGP_{0.35} (b), NCS-NCO/FGP_{0.44} (c), NCS-NCO/FGP_{0.41} (d), and NCO/FGP_{0.44} (e) under different scan rates.

Figure S8. Raman spectra of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, and NCS-NCO/FGP_{0.41} with their D and G peaks.

Figure S9. The comparison of C_{dl} from recent report carbon-based bifunctional electrocatalysts and NCS-NCO/FGP_{0.44}.

The C_{dl} of these carbon-based bifunctional electrocatalysts were performed in a 1M KOH solution. Its calculations are all derived from the CV curves without Faradaic progress. $^{7\text{-}20}$

Table of the content

Table S1. The percentage areas of oxygen-containing functional groups in FGP_{0.48}, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41}, which calculated by fitting the corresponding XPS peaks, respectively.

Table S2. The atomic content of anchored Ni and Co cations for NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, NCS-NCO/FGP_{0.41}, which was calculated by ICP-OES.

Table S3. EIS data fitting results of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, NCS-NCO/FGP_{0.41}, and NCO/FGP_{0.44} electrodes for OER, respectively.

Table S4. Comparison of the electrochemical performances of NCS-NCO/FGP_{0.44} electrode for OER with recently reported catalysts in 1.0 M KOH.

Table S5. EIS data fitting results of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, NCS-NCO/FGP_{0.41}, and NCO/FGP_{0.44} electrodes for HER.

Table S6. Comparison of the electrochemical performances of NCS-NCO/FGP_{0.44} electrode for HER with recently reported catalysts in 1.0 M KOH.

Table S7. Catalyst loadings of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, NCS-NCO/FGP_{0.41}, and NCO/FGP_{0.44} electrodes.

Table S8. Comparison of the electrochemical performances of NCS-NCO/FGP_{0.44} electrode for overall water splitting with recently reported catalysts in 1.0 M KOH.

Table S9. Parameter settings of NCS-NCO/FGP_{0.44} electrode during microwave hydrothermal synthesis.

Electrode	C-C	oxygen-containing functional groups			Area 13	Area 3h	Deveentego	
s		С-ОН	C-0	C=O	0-C=0	Area 1º	Aled Z	rencentage
FGP _{0.48}	61502.34	32044.11	14845.46	-	10156.81	118548.72	57046.38	0.48
FGP _{0.35}	78944.59	9268.97	16531.68	4790.32	11381.39	120916.94	41972.35	0.35
FGP _{0.44}	65612.39	11239.78	22391.02	9781.33	8191.45	117215.97	51603.58	0.44
FGP _{0.41}	127433.30	27318.62	25924.30	20520.75	14584.25	215781.22	88347.92	0.41

Table S1. The percentage areas of oxygen-containing functional groups in FGP_{0.48}, FGP_{0.35}, FGP_{0.44}, and FGP_{0.41}, which calculated by fitting the corresponding XPS peaks, respectively.

^c The percentage areas of oxygen-containing functional groups.

^a The areas of all peaks in C 1s.

^b The areas of the peaks of oxygen-containing functional groups.

Table S2. The atomic content of anchored Ni and Co cations for NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, and NCS-NCO/FGP_{0.41}, which were counted by ICP-OES.

Flootradas	The atomic content of metal cations anchored (μ mol cm ⁻²)				
Electrodes	Ni	Со	Sumª		
NCS-NCO/FGP _{0.48}	4.29	10.53	14.82		
NCS-NCO/FGP _{0.35}	4.17	15.49	19.66		
NCS-NCO/FGP _{0.44}	4.36	13.37	17.73		
NCS-NCO/FGP _{0.41}	5.06	14.51	19.57		

^a The sum atomic content of anchored metal cations.

Electrode	R _s (Ω)	R _{dl} (Ω)	R _{ct} (Ω)	R _{tot} (Ω)
NCS-NCO/FGP _{0.48}	1.129	1.326	4.253	6.708
NCS-NCO/FGP _{0.35}	1.307	1.238	4.068	6.613
NCS-NCO/FGP _{0.44}	1.095	1.277	3.215	5.587
NCS-NCO/FGP _{0.41}	1.389	1.658	4.057	7.104
NCO/FGP _{0.44}	1.389	0.641	4.909	6.939

Table S3. EIS data fitting results of NCS-NCO/FGP_{0.48}, NCS-NCO/FGP_{0.35}, NCS-NCO/FGP_{0.44}, NCS-NCO/FGP_{0.41}, and NCO/FGP_{0.44} electrodes for OER, respectively.

Electrode	Substrate	j (mA cm ⁻²)	η (mV vs RHE)	Ref.
NCS-NCO/FGP _{0.48}	FGP _{0.48}	10	246	
NCS-NCO/FGP _{0.35}	FGP _{0.35}	10	291	
NCS-NCO/FGP _{0.44}	FGP _{0.44}	10	117	This work
NCS-NCO/FGP _{0.41}	FGP _{0.41}	10	199	
NCO/FGP _{0.44}	FGP _{0.44}	10	304	
RuO ₂ /FGP _{0.44}	FGP _{0.44}	10	320	
CoS ₂ -C@MoS ₂	-	10	391	21
Ni ₃ S ₂	-	10	295	17
Ni ₃ S ₂	NF	10	296	22
CoMoS ₄ /Ni ₃ S ₂	NF	10	200	23
CoS _x Se _{2(1-x)}	СС	10	285	24
CoN _x @GDY	GDY ^a -modified NF	10	260	19
MoS ₂ /NiCoS heterostructure	-	10	290	25
(Ni, Fe) S ₂ @MoS ₂ heterostructrues	CFP ^b	10	270	20
Pt-αFe ₂ O ₃	NF	50	304	26
Ru/Cu ₂₊₁ O	CuF ^c	10	210	27

Table S4. Comparison of the electrochemical performances of NCS-NCO/FGP $_{0.44}$ electrode for OER with recently reported catalysts in 1.0 M KOH.

^a Graphdiyne.

^b Carbon fiber paper.

^c Cu foam

Electrode	R _s (Ω)	R _{dl1} (Ω)	R _{dl2} (Ω)	R _{ct} (Ω)	R _{tot} (Ω)
NCS-NCO/FGP _{0.48}	1.027	0.556	1.390	5.100	8.073
NCS-NCO/FGP _{0.35}	1.413	0.324	1.046	4.400	7.183
NCS-	1 075	0 204	0 757	3.335	E 271
NCO/FGP _{0.44}	1.075	0.204	0.757		5.571
NCS-NCO/FGP _{0.41}	0.883	0.374	1.293	4.330	6.880
NCO/FGP _{0.44}	1.469	0.341	1.289	4.882	7.981

Table S5. EIS data fitting results of NCS-NCO/FGP $_{0.48}$, NCS-NCO/FGP $_{0.35}$, NCS-NCO/FGP $_{0.44}$, NCS-NCO/FGP $_{0.41}$, and NCO/FGP $_{0.44}$ electrodes for HER.

Catalyst	Substrate	j (mA cm ⁻²)	η (mV vs. RHE)	Ref.
NCS-NCO/FGP _{0.48}	FGP _{0.48}	10	-219	
NCS-NCO/FGP _{0.35}	FGP _{0.35}	10	-172	
NCS-NCO/FGP _{0.44}	FGP _{0.44}	10	-145	This
NCS-NCO/FGP _{0.41}	FGP _{0.41}	10	-199	work
NCO/FGP _{0.44}	FGP _{0.44}	10	-235	
Pt/C/FGP _{0.44}	FGP _{0.44}	10	-30	
CoS ₂ -C@MoS ₂	-	10	-173	21
Ni ₃ S ₂	-	10	-112	17
Ni ₃ S ₂	NF	10	-189	22
CoMoS ₄ /Ni ₃ S ₂	NF	10	-76	23
CoS _x Se _{2(1-x)}	CC	10	-225	24
CoN _x @GDY	GDY-modified NF	10	-70	19
MoS ₂ /NiCoS heterostructure	-	10	189	25
(Ni, Fe) S ₂ @MoS ₂ heterostructrues	CFP	10	-130	20
Pt-αFe ₂ O ₃	NF	10	-90	26
Ru/Cu ₂₊₁ O	CuF	10	-32	27

Table S6. Comparison of the electrochemical performances of NCS-NCO/FGP $_{0.44}$ electrode for HER with recently reported catalysts in 1.0 M KOH.

Electrode	Mass of catalyst (mg cm²)		Catalyst loading (mg cm ²)	
	m ₀ ª	m1 ^b	Δm ^c	
NCS-	149 C	17/1	14.5	
NCO/FGP _{0.48}	140.0	154.1		
NCS-	120 F	113.1	15.4	
NCO/FGP _{0.35}	128.5			
NCS-	120.2	122.0	16.7	
NCO/FGP _{0.44}	159.5	122.0		
NCS-	126 F	110.0	16.6	
NCO/FGP _{0.41}	130.5	119.9		
NCO/FGP _{0.44}	129.3	119.1	10.2	

Table S7. Catalyst loading of NCS-NCO/FGP $_{0.48}$, NCS-NCO/FGP $_{0.35}$, NCS-NCO/FGP $_{0.44}$, NCS-NCO/FGP $_{0.41}$, and NCO/FGP $_{0.44}$ electrodes.

^a The mass of the catalysts before acid treatment

^b The mass of the catalysts after acid treatment

^c Catalyst loading: $\Delta m = m_0 - m_1$

Catalyst	Substrate	j (mA cm ⁻²)	η (mV vs RHE)	Ref.
NCS-NCO/FGP _{0.48}	FGP _{0.48}	10	1.580	
NCS-NCO/FGP _{0.35}	FGP _{0.35}	10	1.544	
NCS-NCO/FGP _{0.44}	FGP _{0.44}	10	1.481	This
NCS-NCO/FGP _{0.41}	FGP _{0.41}	10	1.596	
NCO/FGP _{0.44}	FGP _{0.44}	10	1.636	WORK
RuO ₂ /FGP _{0.44} Pt/C/FGP _{0.44}	FGP _{0.44}	10	1.583	
Ni ₃ S ₂	-	10	1.63	17
Ni ₃ S ₂	NF	10	~1.55	22
CoMoS ₄ /Ni ₃ S ₂	NF	10	1.568	23
CoS _x Se _{2(1-x)}	CC	10	1.74	24
CoN _x @GDY	GDY-modified NF	10	1.48	19
MoS ₂ /NiCoS heterostructure	NF	10	1.50	25
(Ni, Fe) S ₂ @MoS ₂ heterostructrues	CFP	10	1.56	20
$Pt-\alpha Fe_2O_3$	NF	10	1.51	26
Ru/Cu ₂₊₁ O	CuF	10	1.53	27

Table S8. Comparison of the electrochemical performances of NCS-NCO/FGP_{0.44} electrode for overall water splitting with recently reported catalysts in 1.0 M KOH.

Experimental stage	Temperature (°C)	Operating time (min)	Power (W)
1	30	0	600
2	120	10	600
3	120	5	600
4	160	10	600
5	160	5	600
6	200	12	600
7	200	45	600

Table S9. Parameter settings of NCS-NCO/FGP $_{0.44}$ electrode during microwave hydrothermal synthesis.

References

- 1 Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen and M. Liu, *Adv. Funct. Mater.*, 2019, **29**, 1901783.
- 2 B. Liu, J. Cheng, H.-Q. Peng, D. Chen, X. Cui, D. Shen, K. Zhang, T. Jiao, M. Li, C.-S. Lee and W. Zhang, J. Mater. Chem. A, 2019, 7, 775-782.
- 3 Z. Li, Y. Zhang, Y. Feng, C.-Q. Cheng, K.-W. Qiu, C.-K. Dong, H. Liu and X.-W. Du, *Adv. Funct. Mater.*, 2019, **29**, 1903444.
- 4 M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu and T. J. Bandosz, Carbon, 2008, 46, 1475-1488.
- 5 W. Yang, J. Tian, L. Hou, B. Deng, S. Wang, R. Li, F. Yang and Y. Li, *ChemSusChem*, 2019, **12**, 4662-4670.
- 6 Q. Dong, Y. Zhang, Z. Dai, P. Wang, M. Zhao, J. Shao, W. Huang and X. Dong, *Nano Res.*, 2018, **11**, 1389-1398.
- 7 K. Srinivas, Y. Lu, Y. Chen, W. Zhang and D. Yang, ACS Sustainable Chem. Eng., 2020, 8, 3820-3831.
- 8 Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian, D. Yu, X. Chen and L. Dai, J. Am. Chem. Soc., 2019, 141, 4972-4979.
- 9 J. Du, R. Wang, Y.-R. Lv, Y.-L. Wei and S.-Q. Zang, *Chemical Communications*, 2019, **55**, 3203-3206.
- 10 Q. Hao, S. Li, H. Liu, J. Mao, Y. Li, C. Liu, J. Zhang and C. Tang, *Catal. Sci. Technol.*, 2019, **9**, 3099-3108.
- 11 F. Bu, W. Chen, M. F. Aly Aboud, I. Shakir, J. Gu and Y. Xu, J. Mater. Chem. A, 2019, **7**, 14526-14535.
- 12 Q. Zhang, C. Ye, X. L. Li, Y. H. Deng, B. X. Tao, W. Xiao, L. J. Li, N. B. Li and H. Q. Luo, ACS Appl. Mater. Interfaces, 2018, **10**, 27723-27733.
- 13 B. Weng, X. Wang, C. R. Grice, F. Xu and Y. Yan, J. Mater. Chem. A, 2019, 7, 7168-7178.
- 14 X. Wang, B. Zheng, D. Yang, B. Sun, W. Zhang and Y. Chen, *Energy Technol.*, 2019, **0**.
- 15 Y. Liu, X. Luo, C. Zhou, S. Du, D. Zhen, B. Chen, J. Li, Q. Wu, Y. Iru and D. Chen, *Appl. Catal. B Environ.*, 2020, **260**, 118197.
- 16 M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna and X. Lu, *Adv. Energy Mater.*, 2019, **9**, 1803185.
- 17 X. Zheng, X. Han, Y. Zhang, J. Wang, C. Zhong, Y. Deng and W. Hu, *Nanoscale*, 2019, **11**, 5646-5654.
- 18 X. Chen, Z. Yu, L. Wei, Z. Zhou, S. Zhai, J. Chen, Y. Wang, Q. Huang, H. E. Karahan, X. Liao and Y. Chen, J. Mater. Chem. A, 2019, 7, 764-774.
- 19 Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Liu, C. Xing, F. Lu, F. He, H. Liu and Y. Li, *Nano Energy*, 2019, **59**, 591-597.
- 20 Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li and M. Shao, Appl. Catal. B Environ., 2019, 247, 107-114.
- 21 Y. Zhu, L. Song, N. Song, M. Li, C. Wang and X. Lu, ACS Sustainable Chem. Eng., 2019, 7, 2899-2905.
- 22 L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li and F. Pan, J. Mater. Chem. A, 2019, 7, 18003-18011.
- 23 P. Hu, Z. Jia, H. Che, W. Zhou, N. Liu, F. Li and J. Wang, J. Power Sources, 2019, 416, 95-103.
- 24 Y. Zhang, Y. Qiu, X. Ji, T. Ma, Z. Ma and P. A. Hu, ChemSusChem, 2019, 12, 3792-3800.
- 25 C. Qin, A. Fan, X. Zhang, S. Wang, X. Yuan and X. Dai, J. Mater. Chem. A, 2019, 7, 27594-27602.
- 26 B. Ye, L. Huang, Y. Hou, R. Jiang, L. Sun, Z. Yu, B. Zhang, Y. Huang and Y. Zhang, *J. Mater. Chem. A*, 2019, **7**, 11379-11386.
- 27 J. Gao, L. Yang, D. Wang and D. Cao, *Chem. Eur. J.*, 2019, **n/a**.