The Role of Catalyst-Support Interactions in Oxygen Evolution Anodes based on Co(OH)₂ Nanoparticles and Carbon Microfibers

Laura Mallón,^{a,b} Nuria Romero,^a Alicia Jiménez,^c Elena Martín-Morales,^{a,b} José Alemán,^d Rubén Mas-Ballesté,^c Roger Bofill,^a Karine Philippot,^{*b} Jordi García-Antón,^{*a} Xavier Sala^{*a}

- ^a Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain. Email. <u>xavier.sala@uab.cat</u>
- ^b CNRS, LCC (Laboratoire de Chimie de Coordination), UPR8241, Université de Toulouse, UPS, INPT, F-31077 Toulouse cedex 4, France
- ^a Department of Inorganic Chemistry (module 07), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain

^b Department of Organic Chemistry (módulo 01), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain

Figure S1. TEM images of the as-synthesized CF (a and b) and ox-CF (c and d) before the deposition of Co-based nanoparticles onto their surface.

Figure S2. TEM images of colloidal Co NPs in 1-heptanol **(Co^{heptOH}NPs)** prepared following our reported methodology.¹

Figure S3. XPS data of all the synthesized hybrid materials. The main peaks are indeed to O 1s, N 1s and C 1s regions (O KLL represents the energy of the electrons ejected from the atoms due to the filling of the O1s state (K shell) by an electron from the L shell coupled with the ejection of an electron from an L shell).

Figure S4. High-resolution XPS analysis in the Co 2p region of a) **Co**_{*in*}^{THF}@CF, b) **Co**_{*in*}^{THF}@ox-CF, c) **Co**_{*in*}^{heptOH}@ox-CF, d) **Co**_{*ex*}^{heptOH}@CF and e) **Co**_{*ex*}^{heptOH}@ox-CF.

Figure S5. XPS high-resolution spectra in the O 1s region of the a) $Co_{in}^{THF} @CF$, b) $Co_{in}^{THF} @ox-CF$, c) $Co_{in}^{heptOH} @CF$, d) $Co_{in}^{heptOH} @ox-CF$, e) $Co_{ex}^{heptOH} @CF$ and f) $Co_{ex}^{heptOH} @ox-CF$.

Figure S6. Cyclic Voltammetries (CVs) in a 0.1 M NaOH aqueous solution at pH 13 of 1 mg CFs brush of Co_{in}^{THF}@CF, Co_{in}^{THF}@Ox-CF, Co_{in}^{heptOH}@CF, Co_{in}^{heptOH}@Ox-CF, Co_{ex}^{heptOH}@CF and Co_{ex}^{heptOH}@Ox-CF. CF blanks in grey, ox-CF blanks in black, CV at t=0 s in red, CV after 10-min CA in green, CV after 30-min CA in purple, CV after 1-h CA in pink and CV after 2-h CA in blue.

Figure S7. Evolution of the *i*_{*Co*} *vs.* time of CA in a 0.1 M NaOH aqueous solution at pH 13 of 1 mg CFs brush of **Co**_{*in*}^{THF}@CF, **Co**_{*in*}^{THF}@Ox-CF, **Co**_{*in*}^{heptOH}@CF, **Co**_{*in*}^{heptOH}@Ox-CF, **Co**_{*ex*}^{heptOH}@CF and **Co**_{*ex*}^{heptOH}@Ox-CF, **Co**_{*in*}^{heptOH}@CF and **Co**_{*ex*}^{heptOH}@Ox-CF, **Co**_{*in*}^{heptOH}@CF, **Co**^{*in*}^{heptOH}@CF, **Co**

Figure S8. CVs for **Co**_{in}^{THF}**@CF** (pink), **Co**_{in}^{THF}**@ox-CF** (purple), **Co**_{in}^{heptOH}**@CF** (blue), **Co**_{in}^{heptOH}**@ox-CF** (red), **Co**_{ex}^{heptOH}**@CF** (orange) and **Co**_{ex}^{heptOH}**@ox-CF** (green) recorded before and after a 2-h chronoamperometry experiment in a 0.1 M NaOH aqueous solution (pH 13). i_{Co} t=2h measured after removing all the bubbles formed on the system and performing IR drop correction at 85% again. Ox-CF (black) and CF (grey) blanks are also displayed. Chronoamperometries were performed at a fixed potential of 1 V vs NHE at pH 13 (η = 537 mV) for 2 h in order to study the stability of the systems.

Figure S9. a) Cyclic Voltammograms (CVs) in a 0.1 M NaOH aqueous solution at pH 13 of ox-CFs at t = 0 s and of CFs at t = 10 min (after activation). $Co_{in}^{THF} @CF$ (pink), $Co_{in}^{THF} @ox-CF$ (purple), $Co_{in}^{heptOH} @CF$ (blue), $Co_{in}^{heptOH} @ox-CF$ (red), $Co_{ex}^{heptOH} @CF$ (orange) and $Co_{ex}^{heptOH} @ox-CF$ (green). ox-CF (black) and CF (grey) blanks are also shown. b) Tafel plots of all ox-CFs at t = 0 s and all CFs at t = 10 min (after activation) (colour code as in a).

Figure S10. Representative TEM images of a) $Co_{in}^{THF}@CF$, b) $Co_{in}^{THF}@ox-CF$, c) $Co_{in}^{heptOH}@CF$, d) $Co_{in}^{heptOH}@ox-CF$, e) $Co_{ex}^{heptOH}@CF$ and f) $Co_{ex}^{heptOH}@ox-CF$ at t=0 s and t=2 h after a chronoamperometry at 1 V vs NHE (i.e. η =537 mV) in 0.1 M NaOH (pH 13).

Figure S11. a) XPS survey of **Co**_{in}^{heptOH}@**ox-CF** after a 2 h chronoamperometry (1 V vs. NHE, 0.1 M NaOH). The main peaks can be clearly indexed to O 1s, N 1s and C 1s regions (O KLL represents the energy of the electrons ejected from the atoms due to the filling of the O1s state (K shell) by an electron from the L shell coupled with the ejection of an electron from an L shell). b) Comparison of high-resolution XPS analysis in the Co 2p region for **Co**_{in}^{heptOH}@**ox-CF** before (black line) and after (blue line) a 2 h chronoamperometry. c) O 1s XPS high-resolution spectra for **Co**_{in}^{heptOH}@**ox-CF** after a 2 h chronoamperometry.

Figure S12. O_2 -monitored chronoamperometry experiments for Faradaic efficiency determination. A fixed potential of 1 V vs NHE (pH 13) was applied for 20 min in the CA experiments.

Sample	Co 2p _{3/2}	Satellites	Co 2p _{1/2}	Satellites
Co _{in} ^{THF} @CF	781.4 eV	785.4 eV	797.3 eV	800.8 eV
Co _{in} ^{THF} @ox-CF	781.5 eV	785.4 eV	797.3 eV	802.9 eV
Co _{in} heptOH@CF	781.7 eV	785.6 eV	797.4 eV	803.0 eV
Co _{in} heptOH@ox-CF	781.6 eV	786.9 eV	796.9 eV	804.3 eV
Co _{in} heptOH@ox-CFs after catalysis	780.9 eV	786.2eV	796.4 eV	802.6 eV
Co _{ex} ^{heptOH} @CF	781.2 eV	785.9eV	797.4 eV	804.2 eV
Co _{ex} ^{heptOH} @ox-CF	781.0 eV	785.5 eV	797.1 eV	803.1 eV

Table S1. Binding energies (eV) of core electrons and satellites of CFs-supported Co-based NPs.

Table S2. Main data of the progressive deactivation of the systems when successivechronoamperometries at a fixed potential of 1 V vs NHE are performed to each system.

System	<i>i_{Co t=0 s}</i>	i _{Co t=10 min}	İ Co t=30min	i _{Co t=1h}	i _{Co t=2h}	і_{со REM}^(а)
System	(mA/µg _{co})	(mA/µg _{co})	(mA/µg _{co})	(mA/µg _{co})	(mA/µg _{co})	(%)
Co _{in} ^{THF} @CF	7.2	28.2	25.2	14.4	8.8	32
Co _{in} ™ @ox-CF	28.3	20.1	13.30	10.30	8.2	50
Co _{in} heptOH@CF	32.9	39.3	30.7	23.6	16.8	64
Co _{in} heptOH@ox-CF	42.3	34.6	23.8	18.5	15.4	62
Co _{ex} heptOH@CF	19.2	46.15	41.0	33.3	25.6	55
Co _{ex} heptOH@ox-CF	85.5	56.4	38.2	36.4	29.1	43

(a) % $i_{Co \text{ REM}}$ calculated by dividing $i_{Co \text{ t=2 h}}$ by $i_{Co \text{ t=0 s}}$ as short-term stability data for ox-CF systems and by dividing $i_{Co \text{ t=2 h}}$ by $i_{Co \text{ t=10 min}}$ (value after activation) as short-term stability data for CF systems.

Table S3. Summary of electrocatalytic data for relevant carbon-supported Co-based OER electrocatalystsin alkaline media.

Entry	Catalyst	Ø (nm)	η₀ (mV)	Tafel slope (mV/dec)
12	Co ₃ O ₄ /BCNO		295	57.58
	Co ₃ O4 + BCNO	20 nm	390	93.91
	CO ₃ O ₄		380	98.81
2 ³	Co@C	100-400	295 ^b	58
34	Cop NP/C	25nm	320 ^b	99
	CoP NR/C		270 ^b	71
4 ⁵	Amorphous Co(OH) ₂ Nanosheet	-	320 ^c	68
	Crystalline Co(OH) ₂		330°	102
	CO ₃ O ₄		400 ^c	84
56	Co ₃ O ₄ -NC/Gr-12h	50-80± 3	220 ^b	95
	Co ₃ O₄-NC/NGr-12h	50 ± 3	200 ^b	69
67	CG-CoO	10-30 nm	320 ^b	75
	N-CG-CoO	10-30 nm	270 ^b	71
7 ⁸		4-8 nm	295 ^c	67 ^b
	0304/14-11100		270 ^b	07
	Co₃O₄/rmGO	12-25 nm	270 ^b	68
8 ⁹	CoP NPs	1.5-2 nm	350 ^d	80
	CoP-CNT		290 ^d	50
9 ¹⁰	Co(TCNQ) ₂ /CFs		295 ^b	188
	Co(OH) ₂ -TCNQ/CFs		280 ^b	101
1011	Co ₃ O ₄ /N-p-MCNTs 1		295°	98
	Co ₃ O ₄ /N-p-MCNTs 2	<10nm	245 ^c	78
	Co ₃ O ₄ /p-MCNTs		370 ^c	114
11112	Yolk-Shell Co-CoO/BC	74 nm	280 ^b	73.3
	Solid Co-CoO/BC	74 1111	380 ^b	93.1
12 ¹³	Co@NC-G-500		390 ^b	125.6
	Co@NC-G-600		340 ^b	116.4
	Co@NC-G-700		270 ^b	73.7
	Co@NC-G-800		290 ^b	82.5
13 ¹⁴	Co@GDY/Co	<10 nm	300 ^c	148
	Co@GDY		400 ^c	222

Electrolyte: (a) 0.1 M potassium phosphate pH 7, (b) 1 M KOH pH 14, (c) 0.1 M KOH pH 13 and (d) 0.1 M NaOH pH 13

References

² X. Ji, Y. Li, X. Jia, X. Yang, L. Li, Y. Yao, Y. Cheng, X. Zhang, Z. Lu, H. Liu, *J. Electrochem. Soc.* **2019**, 166, H177-H181.

³ Q. Xiao, Y. Zhang, X. Guo, L. Jing, Z. Yang, Y. Xue, Y-M Yan, K. Sun, *Chem. Commun.* **2014**, 50, 13019-13022.

⁴ J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS. Catal. **2015**, 5, 6874-6878.

⁵ Y. Q. Gao, H. B. Li, G. W. Yang, J. Appl. Phys. **2016**, 119, 034902.

⁶ S. K. Singh, V. M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces **2015**, 7, 442-451.

⁷ S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, *Energy Environ. Sci.* **2014**, 7, 609-616.

⁸ Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nature Materials 2011, 10, 780-786.

⁹ C. C. Hou, S. Cao, W.F. Fu, Y. Chen, ACS Appl. Mater. Interfaces 2015, 7, 2412-28419.

¹⁰ D. Wu, Y. Wei, X. Ren, X. Li, Y. Liu, X. Guo, Z. Liu, A. M. Asiri, Q. Wei, X. Sun, *Adv. Mater.* **2018**, 1705366.

¹¹ Z. Huang, X. Qin, G. Li, W. Yao, J. Liu, N. Wang, K. Ithisuphalp, G. Wu, M. Shao, Z. Shi, ACS Appl. Energy Mater. **2019**, 2, 4428-4438.

¹² M. Yang, D. Wu, D. Cheng, Int. J. Hydrog. Energy **2019**, 44, 6525-6534.

¹³ X. Wen, X. Yang, M. Li, L. Bai, J. Guan, *Electrochim Acta* **2019**, 296, 830-841

¹⁴ J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, L. Z. Wu, ACS Catal. **2017**, 7, 5209-5213.

¹ J. De Tovar, N. Romero, S. A. Denisov, R. Bofill, C. Gimbert-Suriñach, D. Ciuculescu-Pradines, S. Drouet, A. Llobet, P. Lecante, V. Colliere, Z. Freixa, N. McClenaghan, C. Amiens, J. García-Antón, K. Philippot, X. Sala, *Mater. Today Energy* 2018, **9**, 506-515.