1/12

Supplementary Information

Porous manganese oxides synthesized with natural products at room

temperature: A superior humidity-tolerant catalyst for ozone

decomposition

Lianxin Li^a, Pengyi Zhang *, a, b, Ranran Cao^a

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. ^b Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China

*Corresponding Author

E-mail: zpy@tsinghua.edu.cn

Fig. S1 The XRD pattern and TEM image of α -MnO₂ nanorods synthesized by hydrothermal method.

Catalysts	Synthesis	Surface area (m²/g)	Pore volume (cm³/g)	Reaction conditions						
				Tempe- rature	Inlet O ₃	Space velocity	Relative humidity	Duration	O ₃ conversion	Ref.
Ce-MnO _x -2	Room-temperature reaction	294.4	0.77	25 °C 30 °C ~25 °C	100 ppm 40 ppm ~20000 ppm	540 L/g∙h 840 L/ g∙h 12 L/ g∙h	RH 50% RH 65% RH 85%	10 h 6 h 8 h	100% 83% 100%	this study
MnO _x	Room-temperature reaction	299.7	0.65	25 °C	20 ppm	600 L/ g·h	RH 50%	10 h	100%	[22]
H-δ-MnO ₂	Room-temperature reaction & Acid treatment	228	0.37	25 ℃	115 ppm	600 L/ g·h	RH 50%	10 h	55%	[23]
Ag-MnO _x	Room-temperature reaction & Calcination	32	-	30 °C	40 ppm	840 L/ g∙h	RH 65%	6 h	81%	[24]
α -MnO ₂	Hydrothermal method	80.7	-	25 °C	100 ppm	540 L/g·h	RH 50%	10 h	36%	[21]
W-MnO ₂	Hydrothermal method	297.0	-	25 °C	120 ppm	660 L/ g∙h	RH 65%	4 h	50%	[14]
Fe-MnO _x	Hydrothermal method	190.0	-	25 ℃	100 ppm	660 L/ g∙h	RH 60%	6 h	73%	[25]
OMS-2	Hydrothermal method	83	-	30 °C	40 ppm	600 L/ g·h	RH 45%	6 h	100%	[20]
MnFe _{0.5} O _x	Hydrothermal method & Calcination	262	0.57	25 °C	10000 ppm	12 L/ g·h	RH 90%	8 h	90%	[16]
α-MnO ₂	Hydrothermal method & Vacuum treatment	-	-	25 ℃	20 ppm	540 L/g·h	RH 50%	10 h	44%	[26]
Ce- γ -MnO $_2$	Hydrothermal method & Calcination	120	0.30	30 °C	40 ppm	840 L/ g∙h	RH 65%	10 h	84%	[27]
N-MnO ₂	Hydrothermal method & Ammonium-treatment	221	0.39	25 °C	115 ppm	600 L/ g·h	RH 50%	10 h	77%	[19]

Table S1 The synthesis method, physical properties and catalytic performance for O₃ decomposition of reported manganese oxides.

Ce-MnO_x-2 in this study has been tested under different conditions to be compared with other reported manganese oxides. As shown in Table S1, it performed much better than other facilely synthesized catalysts (i.e. MnO_x^{22} , H- δ -MnO₂²³ and Ag-MnO_x²⁴) and exhibited very close activity to those best performing catalysts prepared by hydrothermal method (i.e. Ce- γ -MnO₂²⁷), which implies its excellent activity for O₃ decomposition in humid flow.

Fig. S2 The catalytic performance of Ce-MnO_x-2 for O₃ decomposition under high humidity and high concentration of O₃ (room temperature, 12 L/g_{cat}·h, RH 85%, O₃: 20000 ppm).

Fig. S3 N_2 adsorption-desorption isotherms of the undoped MnO_x and Ce-MnO_x.

Fig. S4 The equilibrium pressures for water adsorption and desorption in the ideal cylindrical pores at 25 °C based on Kelvin equation (P_s: the saturation vapor pressure of water on a plane surface at 25 °C).

The equilibrium pressures on the adsorption and desorption branches are calculated by following formulas derived from the Kelvin equation, where σ , V_m and μ refer to the surface tension, the molar ratio of water and the radius of cylindrical pores, respectively. ³²

$$\frac{P_{adsorption}}{P_s} = \exp\left(\frac{-\sigma V_m}{\mu RT}\right) \tag{1}$$
$$\frac{P_{desorption}}{P_s} = \left(\frac{P_{adsorption}}{P_s}\right)^2 \tag{2}$$

Above results demonstrate that the capillary condensation happens at higher RH in larger pores, and the moisture also desorbs more easily in larger pores, which implies the promoted humidity tolerance of enlarged porous structure.

Fig. S5 TEM images of the undoped MnO_x and Ce- MnO_x .

Fig. S6 FTIR profiles of the undoped MnO_x and Ce- MnO_x .

Synthesis of undoped MnO_x using different mass ratio of reactants

The synthesis is almost the same as the undoped MnO_x , except the dosage of KMnO₄. The weight ratios of KMnO₄ to dopamine hydrochloride adopted in samples, D-2, D-0.5 and D-0.33, were 5:2, 5:0.5 and 5:0.33, respectively. This ratio for the undoped MnO_x was 5:1. Therefore, the MnO_x is also denoted as D-1 here for convenience in analysis.

During the synthesis, obvious excess of $KMnO_4$ was observed of D-0.5 and D-0.33 from the color of solutions.

Fig. S7 SEM images of the undoped MnO_x samples synthesized with different mass ratios of $KMnO_4$ to dopamine.

Synthesis of H-MnO_x samples

The synthesis of H-MnO_x samples is similar to that of undoped MnO_x , except 1 or 2 g of HNO₃ was added into the KMnO₄ solution before the synthetic reaction. As obtained samples were denoted as H-MnO_x-1 and H-MnO_x-2.

Samples	рН				
Sampies	Solutions after the reaction				
undoped MnO _x	7.83				
H-MnO _x -1	6.43				
H-MnO _x -2	4.30				
Ce-MnO _x -1	6.89				
Ce-MnO _x -2	5.76				
Ce-MnO _x -3	4.58				

 Table S2 pH value of synthetic solutions after the reaction.

Fig. S8 Catalytic performance of the undoped MnO_x H-MnO_x and Ce-MnO_x. (25 °C, 540 L/g_{cat}·h, RH 50%, O₃: 100 ppm)

Synthesis of cerium doped manganese oxides with different dosage of dopamine

The synthesis of Ce-D-0.9/0.8/0.7/0.6 is almost the same as that of Ce-MnO_x-2, except the decreasing dosage of dopamine hydrochloride. The weight of dopamine hydrochloride used for Ce-MnO_x-2, Ce-D-0.9, Ce-D-0.8, Ce-D-0.7, Ce-D-0.6 were 1 g, 0.9 g, 0.8 g, 0.7 g and 0.6 g, respectively. For the convenience of analysis, Ce-MnO_x-2 is also denoted as Ce-D-1 here. During the synthesis, obvious excess of KMnO₄ was observed in Ce-D-0.6 sample.

 Samples
 Carbon content (wt.%)

 Ce-MnO_x-2 (Ce-D-1)
 1.5

 Ce-D-0.9
 1.37

 Ce-D-0.8
 0.91

 Ce-D-0.7
 0.45

 Ce-D-0.6
 0.44

Fig. S9 Catalytic performance of cerium doped samples synthesized with different amount of dopamine. (25 °C, 1200 L/g_{cat} ·h, O₃: 100 ppm)

 Table S3 The carbon content of cerium doped samples synthesized with different amount of dopamine.

Fig. S10 SEM images of the cerium doped samples synthesized with different amount of dopamine.