Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Development of BiOI as an effective photocatalyst for oxygen evolution

reaction under simulated solar irradiation

Tzu-Hsin Chen^a, Masaaki Yoshida^{b,c}, Shun Tsunekawa^b, Jia-Hao Wu^a, Kun-Yi Andrew Lin^d, Chechia

Hu^{a*},

^a Department of Chemical Engineering, R&D center for Membrane Technology and Luh Hwa Research Center for Circular Economy, Chung Yuan Christian University, Chungli Dist., Taoyuan City, Taiwan 32023

^b Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan

^c Blue Energy Center for SGE Technology (BEST), Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan

^d Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, Taiwan 40227

* To whom correspondence should be addressed. E-mail: chechiahu@cycu.edu.tw

Tel: 886-3-2654152 Fax: 886-3-2654199

Figure S1 Spectral irradiance of (a) metal halide lamp and (b) xenon lamp used in this work in comparison to solar radiation.

Figure S2 (a) N_2 adsorption-desorption isotherm, (b) TGA plot, and (d) FTIR measurement of BiOI sample. Inset of (a) shows the Barrett–Joyner–Halenda (BJH) pore diameter of the sample.

Figure S3 Photocatalytic O_2 evolution using BiOI under metal halide lamp irradiation in the presence of different concentrations of the electron mediator and the pH adjuster: (a) NaIO₃, (b) AgNO₃, and (c) adjusted pH value using HNO₃ to 1, 3, 4, and 7.

Figure S4 (a) XRD patterns and XPS spectra for (b) survey scan and (c) Ag 3d state of BiOI before and after the reaction with the addition of $AgNO_3$ as the electron mediator.

Figure S5 Magnification of the XRD patterns in the range of $28.5^{\circ}-31^{\circ}$ for BiOI, $1Ru_{pd}/BiOI$ and $1Ru_{im}/BiOI$ samples.

Figure S6 (a) SEM image of $1Ru_{im}/BiOI$ and (b) XRD patterns of $1Ru_{pd}/BiOI$ before and after the photocatalytic reaction.

Figure S7 SEM images and the corresponding elemental mapping for Bi, O, I, and Ru elements of $1Ru_{pd}$ /BiOI samples before (a–e) and after (f–j) the photocatalytic O₂ production.

Figure S8 High-resolution XPS spectra for (a) Bi 4f, (b) O 1s, and (c) I 3d levels of the $1Ru_{pd}/BiOI$ samples after the photocatalytic reaction.