Boric Acid Treated HZSM-5 for Improved Catalyst Activity in Non-oxidative Methane Dehydroaromatization

Sonit Balyan^{a,b}, M. Ali Haider^{b*}, Tuhin S. Khan^b and K. K. Pant^{a*}

^a Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

^b Renewable Energy and Chemicals Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

*Corresponding authors email addresses: haider@iitd.ac.in, kkpant@chemical.iitd.ac.in

Figure S1. XRD pattern of (a) HZSM-5 and (b) [BA] HZSM-5.

Figure S2. ¹¹B MAS NMR spectra of HZSM-5.

Figure S3. TGA graph of HZSM, fresh Mo/HZSM-5, fresh [BA] Mo/HZSM-5, and regenerated Mo/HZSM-5 cataltyst.

From the graph it is clear that the regenerated protocol followed in the method setion is able to completely remove the coke deposited over the used [BA] Mo/HZSM-5 catalyst. The weight loss in the regenerated [BA] Mo/HZSM-5 is showing similar trend as that of calcined fresh Mo loaded prostine and BA treated HZSM-5 with 2.95 wt % loss. For Mo/HZSM-5 and [BA] Mo/HZMS-5 the weight loss are 2.97 and 3.58 wt % respectively.

Figure S4. ¹¹B MAS NMR spectra of regenerated [BA] Mo/HZSM-5.

Figure S5. (a) Methane conversion and product formation rate of (b) benzene, (c) ethylene and (d) ethane measured over time on stream for 1% Mo/HZSM-5 (□) and [BA] 1% Mo/HZSM-5 (▲) catalyst at 700 °C.

Figure S6. (a) Methane conversion and product formation rate of (b) benzene, (c) ethylene and (d) ethane measured over time on stream for 2% Mo/HZSM-5 (□) and [BA] 2% Mo/HZSM-5 (▲) catalyst at 700 °C.

Figure S7. Infrared spectra of the framework region (700-400 cm⁻¹) of HZSM-5, [BA] HZSM-5, and silica. The IR spectra is used to check the crystallinity.

Studies conducted by Verdine and co-workers¹ and Pandya and co-worker² estimates the crystalline phase in ZSM-5 using IR spectroscopy. Determination of purity in ZSM-5 is checked by IR optical density ratio of band at 550 cm⁻¹ and 450 cm⁻¹ in the mid-IR region of structural spectra. Optical density ratio ~ 0.72 -0.8 shows the presence of pure zeolite. If amorphous silica is present in zeolite this optical density ratio is likely to be less than 0.7 for ZSM-5. In our study we utilized these benchmark to confirm the crystallinity of [BA] HZMS-5 w.r.t HZSM-5. From IR analysis, the ratio of optical density for [BA] HZMS-5 and HZSM-5 are 0.78 and 0.72 respectively.

Catalyst	H ₂ consumption (mmol/g)		
	Peak II	Peak III	Peak IV
Mo/HZSM-5	0.58 (492 °C)	0.42 (598 °C)	1.37 (858 °C)
[BA] Mo/HZSM-5	1.01 (484 °C)	0.79 (721 °C)	

Table S1. Quantitative estimation of H₂ consumption in TPR over as-synthesized catalysts.

Table S2. Measured acidity of parent and impregnated HZSM-5.

Catalyst	NH ₃ consumption (mmol/g)		
Cuturyst	Total	Weak acid/strong acid	
HZSM-5	1.67	0.97	
[BA] HZSM-5	2.12	1.49	
Mo/HZSM-5	1.39	0.75	
[BA] Mo/HZSM-5	2.05	0.94	

References

- 1 G. Coudurier, C. Naccache and J. C. Vedrine, J. Chem, Soc., Chem. Commun, 1982, 1413–1415.
- 2 D. B. Shukla and V. P. Pandya, J. Chem. Technol. Biotechnol., 1989, 44, 147–154.