Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Synthesis and Molecular Structure of Model Silica-supported Tungsten oxide Catalysts for Oxidative Coupling of Methane (OCM)

Daniyal Kiani[†], Sagar Sourav[†], Israel E. Wachs^{*} and Jonas Baltrusaitis^{*}

Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA

[†] DK and SS contributed equally

Corresponding authors: iew0@lehigh.edu, job314@lehigh.edu

Figure S1. In situ Raman spectra of the temperature-dependent transformation of crystalline $\alpha \leftrightarrow \beta$ cristobalite phases of the SiO₂ support for 5%Na₂WO₄/SiO₂ prepared using the Na₂WO₄·2H₂O precursor after dehydration at 400°C under flowing 10%O₂/Ar (~30 cc/min) for 1 hour.

The *in situ* Raman spectra of the supported 5%Na₂WO₄/SiO₂ catalyst prepared using Na₂WO₄·2H₂O are shown in **Figure S1** at 120 and 400°C. Each spectrum shows vibrations from Na₂WO₄ crystalline NPs (925, 810 and 303 cm⁻¹) and surface Na-coordinated WO_x species (943 cm⁻¹). For the 120°C spectrum, the vibrations marked with "*" at 220, 407, 780 and 1076 cm⁻¹ are from the crystalline α -cristobalite phase of SiO₂ support.¹ This phase has been reported by almost all studies in OCM literature for supported Mn-Na₂WO₄/SiO₂ catalysts.^{2,3} Increasing the temperature to 400°C transforms the crystalline α -cristobalite phase to the crystalline β -cristobalite phase, with its Raman bands indicated with "#" (288 cm⁻¹ (weak shoulder of 303 cm⁻¹ band), 770 and 1074 cm⁻¹).¹ The crystalline α -cristobalite phase transformation of SiO₂ support was also observed during OCM with *in situ* XRD measurement.^{4,5} More importantly, these findings demonstrate that the crystalline α -cristobalite phase of the SiO₂ support is not present under OCM catalytic reaction conditions.

Figure S2. Deconvolution of *in situ* Raman spectra yielding the spectral ratio of surface Na-WO_x sites to the crystalline Na₂WO₄ phase for the supported 5%Na₂WO₄/SiO₂ catalysts prepared using different Na- and W-oxide precursors. The red curve is for the crystalline Na₂WO₄ NPs, the blue curve is for the surface Na-WO_x species and the black curve is the original measured *in situ* Raman spectrum. The numeric values indicated in each plot is the percentage of surface of each phase, calculated by finding the area under the respective deconvoluted curves for each catalyst.

Table S1. *In situ* UV-Vis DR data of stoichiometric (Na/W=2) Na₂WO₄/SiO₂ dehydrated catalysts. The reader is directed to **Figure 3** for a brief analysis of UV-Vis data of the aqueous precursor solutions that corroborate UV-Vis DRS data summarized herein.

5% Na ₂ WO ₄ /SiO ₂ from different precursors	Eg (eV)	LMCT (nm)	
Na ₂ WO ₄ .2H ₂ O	4.6	214 (s); 257 (w)	
AMT, NaOH	4.8	214 (s); 257 (m)	
AMT, Na ₂ CO ₃	4.6	214 (w), 237(s)	
AMT, NaNO ₃	4.6	240(s)	

 $\overline{s=strong}$, m=moderate and w=weak

Table S2. *In situ* UV-VisDR data of non-stoichiometric (Na/W<2)dehydrated supported Na-WO_x/SiO₂ catalysts prepared from the AMT+NaOH precursors.

Na/W ratio (sample composition)	Eg (eV)	LMCT (nm)	
0.00 (5WO _x /0.0 Na))	3.9	248	
0.32 (5 WO _x /0.2 Na)	4.1	240	
0.64 (5 WO _x /0.4 Na)	4.3	235	
~1.00 (5 WO _x /0.8Na)	4.5	232	
0.40 (8 WO _x /0.4Na)	4.1	243	

Figure S3. (a)NH₃-DRIFT, (b)CO₂-DRIFT spectra at 120°C, highlighting the absence of acidity in Na-containing samples (red, blue) in (a) and absence of basicity in undoped WO_x/SiO_2 sample (black) in (b)

Table S3.	Ratio of	the cont	ribution (of dispersed	Na-WO _x	species t	o crytalline	Na ₂ WO ₄	phase
towards the	e H ₂ -temp	erature-	programn	ned reduction	n profiles	of various	5%Na ₂ WO	₄ /SiO ₂ cata	lysts.

Precursor Used	Na-WO _x /Na ₂ WO ₄ contribution ratio
Na ₂ WO ₄ ·2H ₂ O	1.89
AMT+NaOH	1.96
AMT+Na ₂ CO ₃	2.68

References.

- (1) Bates, J. B. Raman Spectra of α and β -Cristobalite. J. Chem. Phys. **1972**, 57 (9), 4042–4047. https://doi.org/10.1063/1.1678878.
- Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Mn–Na2WO4/SiO2 as Catalyst for the Oxidative Coupling of Methane. What Is Really Known? *Appl. Catal. A Gen.* 2012, *425–426*, 53–61. https://doi.org/https://doi.org/10.1016/j.apcata.2012.02.046.
- Kiani, D.; Sourav, S.; Baltrusaitis, J.; Wachs, I. E. Oxidative Coupling of Methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catal. 2019, 9 (7), 5912–5928. https://doi.org/10.1021/acscatal.9b01585.
- Hou, S.; Cao, Y.; Xiong, W.; Liu, H.; Kou, Y. Site Requirements for the Oxidative Coupling of Methane on SiO2-Supported Mn Catalysts. *Ind. Eng. Chem. Res.* 2006, 45 (21), 7077–7083. https://doi.org/10.1021/ie060269c.
- (5) Vamvakeros, A.; Jacques, S. D. M.; Middelkoop, V.; Di Michiel, M.; Egan, C. K.; Ismagilov, I. Z.; Vaughan, G. B. M.; Gallucci, F.; van Sint Annaland, M.; Shearing, P. R. Real Time Chemical Imaging of a Working Catalytic Membrane Reactor during Oxidative Coupling of Methane. *Chem. Commun.* **2015**, *51* (64), 12752–12755.
- (6) Baes, C. F.; Mesmer, R. E. The Hydrolysis of Cations. Wiley: New York 1976.
- (7) Ostromecki, M. M.; Burcham, L. J.; Wachs, I. E.; Ramani, N.; Ekerdt, J. G. The Influence of Metal Oxide Additives on the Molecular Structures of Surface Tungsten Oxide Species on Alumina: I. Ambient Conditions. J. Mol. Catal. A Chem. 1998, 132 (1), 43–57. https://doi.org/https://doi.org/10.1016/S1381-1169(97)00226-4.
- (8) Waterland, M. R.; Stockwell, D.; Kelley, A. M. Symmetry Breaking Effects in NO3–: Raman Spectra of Nitrate Salts and Ab Initio Resonance Raman Spectra of Nitrate–Water Complexes. J. Chem. Phys. 2001, 114 (14), 6249–6258. https://doi.org/10.1063/1.1355657.