SUPPLEMENTARY INFORMATION

Synthesis and characterization of supported Pd complex on carbon nanofibers for the selective

decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion.

Elba Ochoa ^{a,†}, Wilson Henao ^{a,†}, Sara Fuertes ^b, Daniel Torres ^a, Tomas van Haasterecht ^c, Elinor Scott

^c, Harry Bitter ^c, Isabel Suelves ^a, Jose Luis Pinilla ^{*a}

^a Instituto de Carboquímica, CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain

^b Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis

Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain

^c Biobased Chemistry and Technology, Wageningen University, P.O. Box 17, Wageningen, 6700 AA,

Netherlands

(*) corresponding author: jlpinilla@icb.csic.es

 $(^{\dagger})$ These authors contributed equally to this work

Figure S1. ¹H NMR *(left)* and ¹H-¹H COSY *(right)* spectra of anthranilic acid in acetone- d_6 . *Inset: scheme of the chemical structure of anthranilic acid.* ¹H NMR (400 MHz, acetone- d_6): δ = 7.83 (1H, dd, ³ $J_{H3-H4} = 8.1$, ⁴ $J_{H3-H5} = 1.6$, H3), 7.25 (1H, ddd, ³ $J_{H5-H6} = 8.4$, ³ $J_{H5-H4} = 7.1$, ⁴ $J_{H5-H3} = 1.6$, H5), 6.79 (1H, ddd, ³ $J_{H6-H5} = 8.4$, ⁴ $J_{H6-H4} = 1.1$, H6), 6.56 (1H, ddd, ³ $J_{H4-H3} = 8.1$, ³ $J_{H4-H5} = 7.1$, ⁴ $J_{H4-H6} = 1.1$, H4), 6.41 (s, br, NH₂), 3.30 (s, br, COOH).

Figure S2. ¹H NMR *(left)* and ¹H-¹H COSY *(right)* spectra of $[Pd_2(An)_2Cl_2]$ complex in acetone- d_6 . *Inset: scheme of the proposed chemical structure of* $[Pd_2(An)_2Cl_2]$ *complex.* ¹H NMR (400 MHz, acetone- d_6): δ = 7.93 (1H, dd, ³ J_{H3-H4} = 7.4, ⁴ J_{H3-H5} = 1.4, H3), 7.75 (1H, d, ³ J_{H6-H5} = 8.4, H6), 7.57 (1H, d, ³ J_{H5-H6} = ³ J_{H5-H4} = 7.5, ⁴ J_{H5-H3} = 1.5, H5), 7.28 (1H, t, ³ J_{H4-H3} = ³ J_{H4-H5} = 7.4, H4), 6.76 (s, br, NH₂).

Figure S3. ¹H NMR spectra of $[Pd_2(An)_2Cl_2]$ (top) and anthranilic acid (bottom) in DMSO- d_6 .

Figure S4. Energy-dispersive X-ray spectra of AnPd/CNF (EtOH)

Figure S5. Energy-dispersive X-ray spectra of AnPd/CNF (DMF).

Figure S6. STEM-HAAD micrograph and metal particle size distribution of a 0.6 wt.%Pd/CNF heterogeneous catalyst prepared by incipient wetness impregnation and further reduction with H₂.