Electronic supplementary information (ESI)

A green approach for preparation of surfactant embedded sulfonated carbon catalyst towards glycerol acetalization reaction

Anindya Ghosh,^a Aniruddha Singha,^a Aline Auroux,^b Avik Das,^{c,d} Debasis Sen,^{c,d} and Biswajit Chowdhury^{*,a}

^a Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand-826004, India.

^b Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256

CNRS- Université Lyon1, 2 avenue Albert Einstein, 69626, Villeurbanne Cedex, France.

^c Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India.

^d Homi Bhabha National Institute, Mumbai-400094, India.

* Corresponding author. Tel.: (+91)-326-2235663; Fax.: (+91)-326-2296563; E-mail: biswajit72@iitism.ac.in.

Section Page numbers Contents Section S1 FESEM images and corresponding particle size distributions S2 Section S2 XPS and CHNS/O analysis S3-S5 Section S3 Effect of different reaction parameters S6-S7 Section S4 Macromolecules formation mechanism **S**8 Section S5 XRD, N₂ adsorption/desorption, FTIR, ¹³C-NMR, XPS, and Raman analysis S9-S12 of GSR-SO3Hcatalyst Section S6: Calculation of atomic percentage to mmol g⁻¹ S12

Section S1: FESEM images and corresponding particle size distributions

Figure S1. FESEM images (100 nm scale) of (a) G-SO3H, (b) GL-SO3H, and (c) GS-SO3H catalysts. Images (d) to (f) show their respective particle size distributions (histograms).

Section S2: XPS and CHNS/O analysis

Figure S2. XPS survey spectrum (a) and core-level spectra of C 1s (b), O 1s (c), and S 2p (d) for the G-SO3H catalyst.

Figure S3. XPS survey spectrum (a) and core-level spectra of C 1s (b), O 1s (c), and S 2p (d) for GL-SO3H catalyst.

Figure S4. XPS core-level N (1s) spectra of GS-SO3H (a) and GSR-SO3H (b) catalysts.

Catalyst	N (%)	C (%)	H (%)	S (%)	O (%)
G-SO3H	0.0	67.0	3.7	6.1	23.3
GL-SO3H	0.0	65.1	3.7	7.4	19.3
GS-SO3H	1.2	64.1	6.1	6.7	17.3

 Table S1. CHNS/O analysis (mass %) of the catalysts

Table S2. Atomic concentration of the elements from the high-resolution core-level spectra.

Catalyst	N (%)	C (%)	S (%)	O (%)
G-SO3H	-	79.1	4.2	16.7
GL-SO3H	-	79.2	2.4	18.4
GS-SO3H	1.6	79.8	2.3	16.3
GSR-SO3H	0.4	76.8	4.6	18.2

Section S3: Effect of different reaction parameters

Figure S5. Acetalization of glycerol under various glycerol to acetone mole ratio over different carbon-based catalysts. Reaction condition: Room temperature, reaction time: 4 h, catalyst amount= 5 wt. % (w.r.t glycerol)

Figure S6. Variation of catalyst wt. (%) for glycerol acetalization over GS-SO3H catalyst.

Reaction condition: glycerol: acetone =1:4, room temperature, reaction time = 4 h.

Figure S7. Variation reaction temperature for glycerol acetalization over GS-SO3H catalyst. Reaction condition: glycerol: acetone =1:4, room temperature, reaction time = 4 h, catalyst amount= 5 wt. % (w.r.t glycerol).

Section S4: Macromolecules formation mechanism

Scheme S1. Dehydration, decarbonylation, and aromatization of glucose under hydrothermal condition.

Figure S8. XRD analysis of GS-SO3H and GSR-SO3H catalysts.

Figure S9. N_2 adsorption/desorption analysis (a) and BJH pore size distribution plot (b) of GS-SO3H and GSR-SO3H catalysts.

Figure S10. FTIR spectra of GS-SO3H and GSR -SO3H catalysis.

Figure S11. CP MAS ¹³C-NMR spectra of GS-SO3H and GSR-SO3H catalysts.

Figure S12. XPS survey spectrum (a) and core-level spectra of C 1s (b), O 1s (c), and S 2p (d) for GSR-SO3H catalyst.

Figure S13. Raman spectra of GS-SO3H and GSR -SO3H catalysis.

Section S6: Calculation of atomic percentage to mmol g⁻¹

Atomic % of S = the total number of S atoms out of 100

$$=\frac{\text{total number of S atoms}}{N_A} \text{ moles per 100 atom}$$

These 100 atoms now contain carbon, oxygen, sulfur, and nitrogen

 $(total number of C atoms \times M_C) + (total number of O atoms \times M_O) + (total number of S atoms \times M_S) + (total number of N atoms \times M_N)$

$$N_A$$

g

 $S content = \frac{total number of S atoms}{Total weight \times N_A} mmol g^{-1}$