The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34

Jinpeng Du^{a,c}, Xiaoyan Shi^{a,c*}, Yulong Shan^{a,c}, Yingjie Wang^{a,c}, Wenshuo Zhang^{a,c}, Yunbo Yu^{a,b,c}, Wenpo Shan ^{b*}, Hong He^{a,b,c}

- ^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- ^b Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- ^c University of Chinese Academy of Sciences, Beijing 100049, China.

Includes 8 pages, 5 figures, 3 tables.

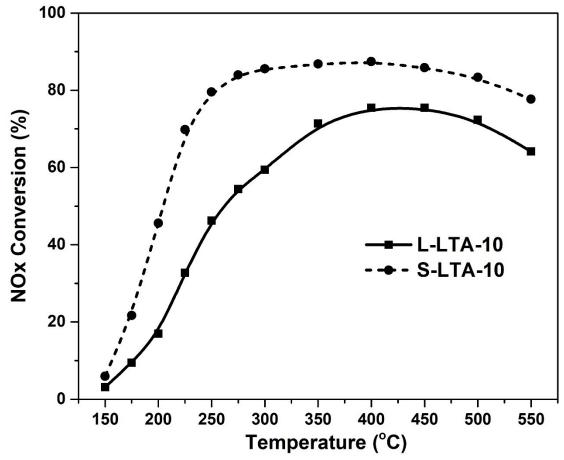


Figure S1. NH₃-SCR activities of Cu-SAPO-34 with large and small particle sizes after low-temperature hydrothermal treatment for 10 h.

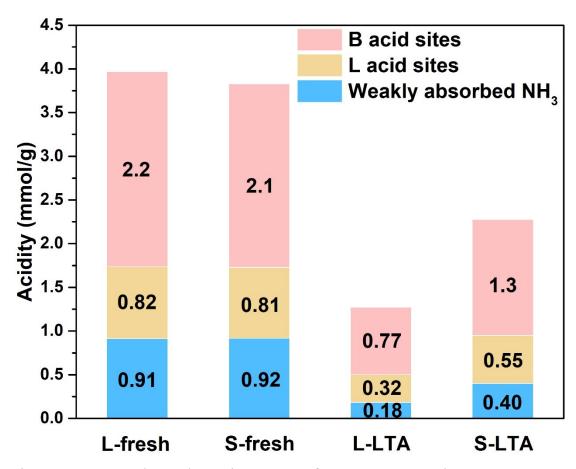


Figure S2. Integrated NH₃ desorption amounts from NH₃-TPD results.

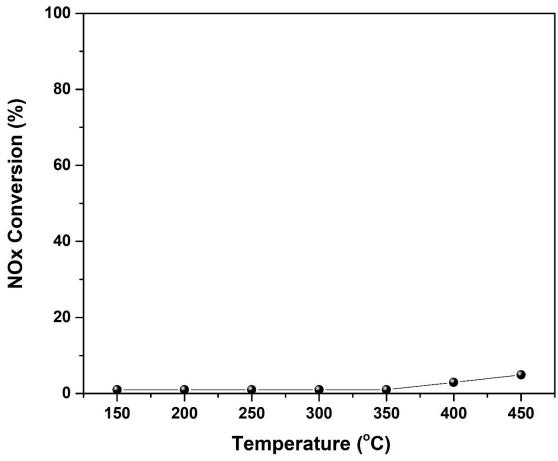


Figure S3. NH_3 -SCR activity of $CuAl_2O_4$ (obtained by calcinating the mixture of CuO and Al_2O_3 at 1000 °C for 2h).

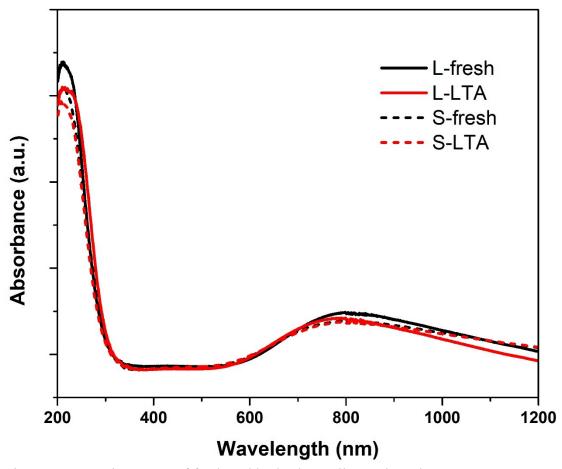
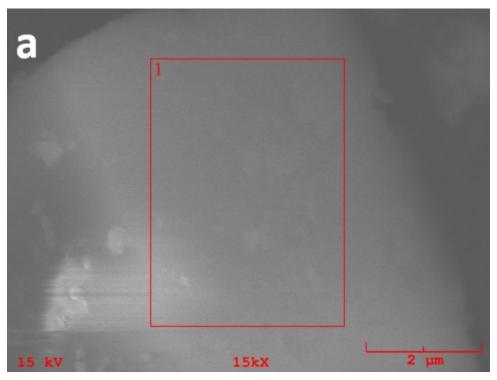
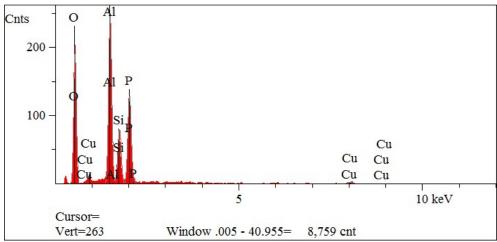
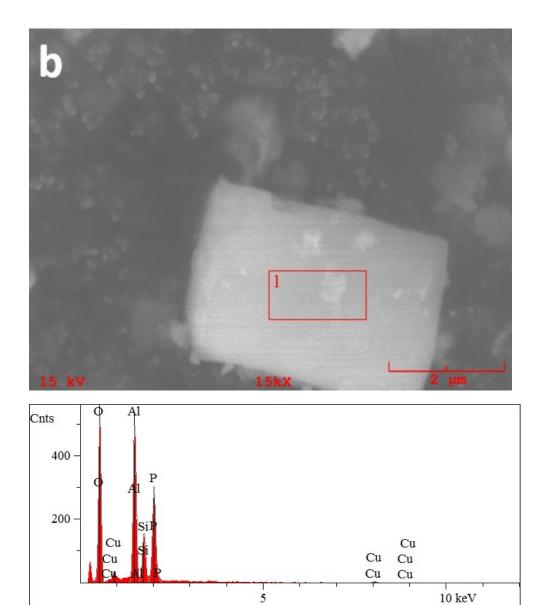





Figure S4. UV-vis spectra of fresh and hydrothermally aged catalysts.

Ultraviolet visible diffuse reflectance spectroscopy (UV-vis-DRS) was carried out on a Varian Cary 5000 spectrometer at room temperature with scanning range from 200 nm to 1200 nm.

Window .005 - 40.955= 19,701 cnt

Figure S5. SEM-EDS images of (a) L-fresh (b) S-fresh.

Cursor= Vert=564

Table S1. Deconvoluted peaks of ²⁹Si NMR results of Cu-SAPO-34 with large and small particle sizes for fresh and LTA catalysts.

	Si(4Al)/%	Si(3Al)/%	Si(2Al)/%	Si(1Al)/%	Si(0Al)/%
L-fresh	75.0	5.7	5.8	6.2	7.3
L-LTA	68.3	15.6	6.2	5.5	4.3
S-fresh	75.3	6.4	8.2	6.8	3.3
S-LTA	62.5	17.5	8.6	5.8	5.6

Table S2. Surface area and pore volume of Cu-SAPO-34 with different particle sizes.

	L-fresh	L-LTA	S-fresh	S-LTA
Area (m ² /g)	459.6	134.9	462.2	181.6
pore volume				
(cm^3/g)	0.239	0.089	0.249	0.1

Table S3. Atomic composition of Cu-SAPO-34 with different crystallite sizes (results derived from SEM-EDS).

)-				
Atomic/%	О	Al	Si	P	Cu
L-fresh	57.8	20.2	7.7	12.6	1.8
L-LTA	63.4	17.4	7.1	11.2	0.8
S-fresh	63.5	17.4	6.4	11.6	1.1
S-LTA	68.6	15	6.3	9.5	0.6