Electronic supplementary information (ESI)

Impact of edge on interfacial interactions and efficient visible-light photocatalytic activity of metal-semiconductor hybrid 2D materials

Deobrat Singh^{*1}, Pritam Kumar Panda¹, Nabil Khossossi^{1,2}, Yogendra Kumar Mishra³,

Abdelmajid Ainane^{1,2}, Rajeev Ahuja^{*1,4}

¹Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Sweden

²Laboratoire de Physique des Matèriaux et Modélisations des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, Moulay Ismail University, Faculty of Sciences, Department of Physics, Meknes, Morocco ³NanoSYD, Mads Clausen Institute, University of Southern Denmark, Denmark

⁴Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100

44 Stockholm, Sweden.

Figure S1. The relative energy profile of mSi₂BN/MoS₂ heterostructure under vdW interactions between Si₂BN and MoS₂ monolayer.

Figure S2. The relative energy profile of rSi_2BN/MoS_2 heterostructure under vdW interactions between Si_2BN monolayer and MoS_2 nanoribbon.

Figure S3. The projected density of states of pristine (a) Si_2BN monolayer, (b) MoS_2 monolayer. The orbital-decomposed density of states of heterostructure of (c) mSi_2BN/MoS_2 and (d) rSi_2BN/MoS_2 system. The Fermi energy is set at zero.

Figure S4. The change of total energy at 300 K as a function of time for the considered sheet. The inserts present the relaxed MoS_2/Si_2BN monolayer and ribbon after the different dynamic simulations, along with their structure distortion. (a) Total energy variation of MoS_2/Si_2BN monolayer and H atom absorbed on Si_2BN side and (b) corresponding optimized structure in which H atom presented at the same position like Figure 6 (see in the main manuscript). (c) Total energy variation of MoS_2/Si_2BN monolayer and H atom absorbed on MoS_2/Si_2BN ribbon and H atom absorbed on MoS_2/Si_2BN ribbon and H atom absorbed on Si_2BN side and (h) corresponding optimized structure in which H atom presented at the same position like Figure 6 (see in the main manuscript).

Figure S5. The fluctuation of average force at 300 K as a function of time for the considered sheet. The inserts present the relaxed MoS_2/Si_2BN monolayer and ribbon after the different dynamic simulations, along with their structure distortion. (a) Average force variation of MoS_2/Si_2BN monolayer and H atom absorbed on Si_2BN side, (b) average force variation of MoS_2/Si_2BN monolayer and H atom absorbed on MoS_2 side (c) average force variation of MoS_2/Si_2BN ribbon and H atom absorbed on MoS_2 side (d) average force variation of MoS_2/Si_2BN ribbon and H atom absorbed on Si_2BN side in which H atom presented at the same position like Figure 6 (see in the main manuscript).