Support information

In situ Grown Lanthanum Sulfide/Molybdenum Sulfide Hybrid Catalyst for Electrochemical Hydrogen Evolution

Xinran Ding,^a Tao Yang,^{a,}* Wenxian Wei,^b Yihui Wang,^a Kai Xu,^a Zizheng Zhu,^a Hong Zhao,^a Tingting Yu^a and Dongen Zhang^a

^a Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of

Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005 (China)

^bTesting Center, Yangzhou University, Yangzhou 225009 (China)

CORRESPONDING AUTHOR

Correspondence and requests for materials should be addressed to Tao Yang (yangtao_hit@163.com)

Fig. S1 SEM image of La₂S-MoS_{2.}

Fig. S2 TEM image of La₂S-MoS_{2.}

Fig. S3 SEM images of (A) La₂S₃-MoS₂-1, (B) La₂S₃-MoS₂-2, (C) La₂S₃-MoS₂-3, (D) La₂S₃-MoS₂-

 $4, (E) La_2S_3\text{-}MoS_2\text{-}5, (F) La_2S_3\text{-}MoS_2\text{-}6.$

Fig. S4 TEM of (A) La₂S₃-MoS₂-1, (B) La₂S₃-MoS₂-2, (C) La₂S₃-MoS₂-3, (D) La₂S₃-MoS₂-4, (E)

La₂S₃-MoS₂-5, (F) La₂S₃-MoS₂-6.

Fig. S5 TEM-EDX element mapping of La, S and Mo for (A) La₂S₃-MoS₂-1and (B) La₂S₃-MoS₂-3.

Fig. S6 TEM-EDX spectra of (A) La₂S₃-MoS₂-1, (B) La₂S₃-MoS₂-2, (C) La₂S₃-MoS₂-3, (D) La₂S₃-MoS₂-4, (E) La₂S₃-MoS₂-5, (F) La₂S₃-MoS₂-6, (G) La₂S₃-MoS₂.

Fig. S7 XRD of La_2S_3 -MoS₂-1, La_2S_3 -MoS₂-2, La_2S_3 -MoS₂-3, La_2S_3 -MoS₂-4, La_2S_3 -MoS₂ and

 MoS_2

Fig. S8 Survey XPS spectra of La₂S₃-MoS₂ with different La content.

Fig. S9 High-resolution XPS spectra of La

Fig. S10 High-resolution XPS spectra of Mo

Fig. S11 High-resolution XPS spectra of S

Fig. S12 (A) Nitrogen adsorption-desorption isotherms of La_2S_3 -MoS₂ and MoS₂ (B) the

corresponding pore distribution

Fig. S13 (A) Polarization curves of samples for HER with different La content. (B) Overpotentials for the HER current density of 60 mA cm⁻².

Fig. S14 Electrochemical active surface area analysis by the cyclic voltammetry scans in a non-Faradaic potential range at different scan rate (A) La₂S₃-MoS₂/C, (B) MoS₂/C and (C) Com-MoS₂/C.

Fig. S15 Comparison of specific activities of La₂S₃-MoS₂ and MoS₂ for HER. Based on BET test and

double-layer capacitance (C_{dl}) test, the electrochemical surface area (EASA) of La₂S₃-MoS₂ is 1.5 times that of pristine MoS₂. We then normalized the current densities of La₂S₃-MoS₂ by dividing by 1.5.

Fig. S16 LSV curves of La₂S₃-MoS₂ and Pt/C obtained before and after1000 times LSV scans,

Fig. S17 Chronoamperometric responses (i-t) collected on the (A) La₂S₃-MoS₂ and (B) Pt/C at the applied overpotentials of 205 mV and 45 mV, respectively.