Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Phosphorus-Doped Inverse Opal g-C₃N₄ for Efficient and Selective CO Generation from Photocatalytic Reduction of CO₂

Xiaoyue Huang^a, Wenyi Gu^b, Songchang Hu^a, Yan Hu^b, Juying Lei^{b,c,*}, Liang Zhou^b, Lingzhi Wang^a, Yongdi Liu^{b,c}, Jinlong Zhang^{a,*}

^a Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. Email: jlzhang@ecust.edu.cn

^b State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. Email: leijuying@ecust.edu.cn.

^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.

Figure S1. CO₂ photoreduction flowchart (1. Evacuate the reactor; 2. Inject 1 mL ultrapure water and 200 mL CO₂ into the reactor; 3. Irradiate the catalyst with Xe lamp for 4 h; 4. Extract 5 mL of reacted gas; 5. Inject gas into GC for analysis).

The calculation of the evolution rate of CO is according to Eqs. S1:

$$CO \text{ evolution rate} = \frac{S}{S_0} * \frac{C_0 V_0}{22.4mt}$$
(S1)

s: Peak area of CO in the react gas in GC; S_0 : Peak area of CO in standard gas in GC; C_0 : Standard gas concentration (ppm); V_0 : The volume of the reactor (L); *m*: The quality of the catalyst (g); *t*: The time of irradiation (h).

Figure S2. HRTEM images of P-IOCN

Figure S3. EDS analysis of P-IOCN

Figure S4. Cycling tests of photocatalytic CO₂ reduction into CO over P-IOCN

Table S1. Specific surface area and pore volume of the photocatalysis					
Catalyst	Surface Area (m^2/g)	Pore Volume(cm ³ /g)			
Bulk CN	3.89	0.034556			
IO CN	34.19	0.145081			
P-IO CN	19.88	0.123472			

Table S1. Specific surface area and pore volume of the photocatalysts

 Table S2. Elemental analysis and ICP-AES of P-IOCN

Catalyst	N (wt%)	C (wt%)	P (wt%)	C/N (wt%)
IO CN	52.14	32.73	0	0.6277
P-IO CN	52.12	32.09	0.68	0.6156

Table S3. Comparison of CO2 photoreduction activity of the P-IO CN with otherreported photocatalysts.

Catalyst	Catalyst amount (mg); Reaction solution	Light source	Evolution rate (µmol g ⁻¹ h ⁻¹)	Reference
P-IO CN	30 mg	300 W Xe	CO: 31.22	This work
	H ₂ O (1 mL)	lamp		
α -Fe ₂ O ₃ /g-C ₃ N ₄	25 mg	300 W Xe	CO: 27.2 ¹	
	H ₂ SO ₄ (5 mL, 4 M)	lamp		
Ti ₃ C ₂ MXene/	20 mg	300 W Xe		
g-C ₃ N ₄	NaHCO ₃ (1.26 g)	lamp with	CO: 5.2	2
	H ₂ SO ₄ (4 mL, 2 M)	420 nm filter		
Flower-like g-C ₃ N ₄	30 mg	300 W Xe	CO: 18.8	3
	H ₂ O (0.5 mL)	lamp		
	100 mg	500 W Xe		
ZnO/g-C ₃ N ₄	NaHCO ₃ (0.12 g)	lamp with	CO: 29	4
	HCl (0.25 mL, 4 M)	420 nm filter		
CoZnAl-	50 mg	300W Xe	CO: 10.1	5
LDH/RGO/g-C ₃ N ₄	H ₂ O (0.4 mL)	lamp		
	20 mg	300W Xe		
CQDs/g-C ₃ N ₄	water vapor	lamp with	CO: 23.4	6
		400 nm filter		
	30 mg	300W Xe		
WO ₃ /g-C ₃ N ₄	H ₂ O (95 mL)	lamp with	CO: 14.6	7
	TEOA (5 mL)	420 nm filter		

Notes and references

- 1. Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao and P. K. Wong, *Advanced Materials*, 2018, **30**, 1706108.
- 2. C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun and K. Lv, *Applied Catalysis B: Environmental*, 2020, **268**, 118738.
- 3. F. Li, D. Zhang and Q. Xiang, *Chemical Communications*, 2020, **56**, 2443-2446.
- 4. W. Yu, D. Xu and T. Peng, *Journal of Materials Chemistry A*, 2015, **3**, 19936-19947.
- 5. Y. Yang, J. Wu, T. Xiao, Z. Tang, J. Shen, H. Li, Y. Zhou and Z. Zou, *Applied Catalysis B: Environmental*, 2019, **255**, 117771.
- H. Feng, Q. Guo, Y. Xu, T. Chen, Y. Zhou, Y. Wang, M. Wang and D. Shen, *ChemSusChem*, 2018, 11, 4256-4261.
- 7. X. Li, X. Song, C. Ma, Y. Cheng, D. Shen, S. Zhang, W. Liu, P. Huo and H. Wang, ACS Applied Nano Materials, 2020, **3**, 1298-1306.