Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Strong metal-support interactions in Pd/Co₃O₄ catalyst in wet methane combustion: *in situ* X-ray absorption study

William Barrett,^{a#} Somaye Nasr,^{b#} Jing Shen,^b Yongfeng Hu,^c Robert E. Hayes,^b Robert W.J. Scott,^{a,*} Natalia Semagina^{b,*}

^a Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon S7N 5C9 Canada;

^b Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. Edmonton, Alberta T6G 1H9 Canada;

^c Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon S7N 2V3 Canada

Corresponding authors: Natalia Semagina <u>semagina@ualberta.ca</u>; Robert W.J. Scott <u>robert.scott@usask.ca</u>

[#]these two authors contributed equally and are listed in alphabetical order

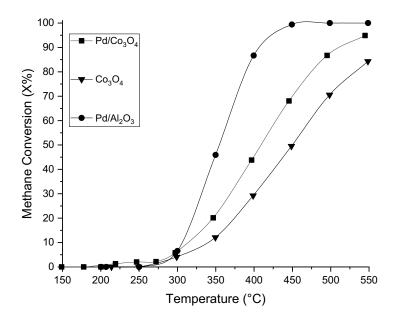


Fig. S1. Methane combustion activity of the prereduced catalysts (300 °C, in H_2) in the wet feed. 0.3 g catalyst loading, with 0.3 wt.% Pd in each of Co₃O₄ and Al₂O₃. Pd dispersion is 12% in Pd/Co₃O₄ and 40% in Pd/Al₂O₃.