Electronic Supplementary Information

Polymer fiber membrane-based direct ethanol fuel cell with Ni-doped

SnO₂ promoted Pd/C catalyst

Ting Qu,^a Qiang Tan,^{*a} Liting Liu,^b Shengwu Guo,^a Sai Li^{*c} and Yongning Liu^{*a}

^a State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

^b Analytical and Testing Center, Northwestern Polytechnical University, Xi'an, 710072, China

^c School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China

* Corresponding Authors: qiangtan@xjtu.edu.cn (Q. Tan); saili@xust.edu.cn (S. Li); ynliu@xjtu.edu.cn (Y. Liu)

Fig. S1. The image of the 'hm-e17270' anion-exchange membrane.

Fig. S2. Size histogram of SnO₂ nanoparticles (average diameter: 10.3 nm).

Fig. S3. Size histogram of Ni-doped SnO₂ nanoparticles (average diameter: 8.3 nm).

Fig. S4. (a) CV and (b) CA curves of Pd/C, Pd/SnO₂/C and Pd/Ni-SnO₂/C catalysts in 1.0 M KOH and 1.0 M EtOH mixed solution (-0.8 to 0.3 V vs Hg/HgO, sweep rate 50 mV s⁻¹).

Fig. S5. (a) CV curves of Pd/Ni_{5at%}-SnO₂/C, Pd/Ni_{7at%}-SnO₂/C and Pd/Ni_{10at%}-SnO₂/C catalysts in 1.0 M KOH solution. (b) CV and (c) CA curves of Pd/Ni_{5at%}-SnO₂/C, Pd/Ni_{7at%}-SnO₂/C and Pd/Ni_{10at%}-SnO₂/C catalysts in 1.0 M KOH and 1.0 M EtOH mixed solution (-0.8 to 0.3 V vs Hg/HgO, sweep rate 50 mV s⁻¹).

Fig. S6. A TEM image of Pd/Ni-SnO₂/C catalyst before and after the AAT test.

Fig. S7. SEM images of polymer fiber membrane.

Fig. S8. SEM images of porous NiCo₂O₄ catalyst.

Fig. S9. Nyquist plots of the DEFCs with the Pd/C, Pd/SnO₂/C and Pd/Ni-SnO₂/C anode catalysts at 30 °C.

Fig. S10. Polarization and power density curves of PFM-based DEFC with Pd/Ni- SnO_2/C (anode) and NiCo₂O₄ (cathode) catalysts in a 1.0 M EtOH solution containing different KOH concentrations.

Physical property	Value
Thickness (µm)	159.3
Basis Weight (g m ⁻²)	61.5
Air Resistance (sec 100 ml)	4.51
Electrolyte Holding Ratio (%)	195
S Content (%)	0.70

Table S1. Physical properties of PFM

The information is provided by Nippon Kodoshi Corporation.

Table S2. Physical properties of PEM

Physical property	Value
Thickness (µm)	200
Membrane area resistance (Ω cm ⁻²)	≤2.2
Water transmissivity (mL h-1 cm-2 MPa-1)	≤0.1

The information is provided by Huamotech Corporation.

Table S3. The summary of the particle size characterization (XRD, TEM)

	β(101)	θ (101)	Crystallite size (nm) from XRD	Particle size (nm) from TEM
SnO ₂	0.716	33.856	11.6	10.3
Ni-SnO ₂	0.912	34.086	9.0	8.3

Table S4. Comparison of DEFCs performance in alkaline media

Anode (catalyst loading / mg cm ⁻²)	Cathode (catalyst loading / mg cm ⁻²)	Solution	Electrolyte	Temperature (°C)	Power density (mW cm ⁻²)	Refs.
Pd/C (1 _{Pd})	NiCo ₂ O ₄ (20)	KOH	PFM	30	10.5	This work
Pd/SnO ₂ /C (1 _{Pd})					17.9	
Pd/Ni-SnO ₂ /C (1 _{Pd})					47.4	
$Ni_{29}Pd_{34}Pt_{37}/C(1)$	Pt/C (1 _{Pt})	NaOH	Tokuyama A006	40	41	1
Pd ₁ Nb ₁ /C (1 _{Pd})	Pt/C (1 _{Pt})	KOH	Nafion 117	70	18.11	2
PdNi/EGO (1 _{Pd})	Pt/C (1)	NaOH	Tokuyama AS4	50	16.6	3
Pd/C (2.56)	(Bg-CA-M)-Fe/N/C (2.56)	KOH	Tokuyama A201	90	64	4
PdNiSn/C _F (1)	Pt/C (1)	NaOH	Nafion 117	100	38.8	5
Pd/C (6 _{Pd})	FeCo (2)	KOH	Tokuyama A201	room temperature	32	6

Supplementary References

- 1. A. Dutta, R. Adhikary, P. Broekmann and J. Datta, *Appl. Catal. B-Environ.*, 2019, **257**, 117847.
- F. M. Souza, J. Nandenha, B. L. Batista, V. H. A. Oliveira, V. S. Pinheiro, L. S. Parreira, A. O. Neto and M. C. Santos, *Int. J. Hydrog. Energy*, 2018, 43, 4505-4516.
- J. L. Tan, A. M. De Jesus, S. L. Chua, J. Sanetuntikul, S. Shanmugam, B. J. V. Tongol and H. Kim, *Appl. Catal. A-Gen.*, 2017, 531, 29-35.
- M. Rauf, R. Chen, Q. Wang, Y.-C. Wang and Z.-Y. Zhou, *Carbon*, 2017, 125, 605-613.
- L. P. R. Moraes, B. R. Matos, C. Radtke, E. I. Santiago, F. C. Fonseca, S. C. Amico and C. F. Malfatti, *Int. J. Hydrog. Energy*, 2016, 41, 6457-6468.
- H. A. Miller, L. Wang, M. Bellini, J. Filippi, A. Marchionni, M. G. Folliero,
 A. Lavacchi, M. V. Pagliaro and F. Vizza, *Energy Technol.*, 2016, 4, 1119-1124.