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Figure S1. SEM of the bare WO3 and C-M2P-CoOx/WO3 electrode. 
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Figure S2. XRD of the bare WO3.  
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Figure S3. the UV-vis DRS of (a) WO3 and (b) C-M2P-CoOx/WO3 films.   
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Figure S4. a) the XPS full scan and fine scan of b) Co, c) C and d) P on C-M2P-CoOx/WO3 films 

after 2 h photoelectrolysis.  
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Figure S5. the photoelectrochemical behavior based on C-M2P-CoOx/WO3 electrode when 

applied different external bias at (a) 0.75 V and (b) 1.23 V under illumination by LEDs (λ =400 

nm). 
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Figure S6. photocurrent densities based on C-M2P-CoOx/WO3 electrode under illumination by 

LEDs with λ (a) at 380 nm, (b) at 420 nm, (c) at 450 nm and (d) at 470 nm when applied 0.75 V 

external bias. 
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Figure S7. The controlled-potential electrolysis of water oxidation based on C-M2P-CoOx/WO3 

electrode at 1.23 V under continued visible-light irradiation (λ = 400 nm). 
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Figure S8. The detection of hydrogen and oxygen by GC based on C-M2P-CoOx/WO3 electrode 

after photoelectrolysis at 0.75 V under continued visible-light irradiation (λ = 400 nm). finite.  
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Figure S9. a) C-M2P-CoOx/WO3 electrode reused for bulk photoelectrolysis and performed for 

five cycles with 0.75V bias; b) the produced charge under continued visible-light irradiation (λ = 

400 nm). 
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Figure S10. Controlled-potential electrolysis of water oxidation based on WO3 and 

C-M2P-CoOx/WO3 for 10 h under continued visible-light irradiation (λ = 400 nm) with the bias at 

0. 75 V. 
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Figure S11. HOMO level measured based on CV of C-M2P vs. NHE. [1] 
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Figure S12. OCVD plots of (a) WO3, (b) C-M2P/WO3 photoanode with 400 nm LED lamp 

illumination from the electrolyte-electrode side (ΔV is the difference in voltage between dark and 

illumination conditions, τm is the decay lifetime).  

It is noted that the measurement here operated for the complete charge decay of the WO3, and 

C-M2P/WO3 phooelectrode. The differences in ΔV compared with Fig. 7 might be originated 

from the experimental error. However, the decay trend among WO3, C-M2P/WO3 and 

C-M2P-CoOx/WO3 is clearly sustained. 

 



The calculation for ECB and EVB for WO3 film. 

In general, a simple method can be applied to determine the band edge positions of CB and VB of 

a semiconductor respectively. The CB edge of a semiconductor at zero charge (pHzpc) can be 

figured up using the following equation S1-2. [2]  

ECB = χ – Ee-1/2 Eg                                                 (1)  

EVB = Eg + ECB                                                                               (2)  

where ECB is the CB edge potential, EVB is the VB edge potential, and χ is the electronegativity of 

the semiconductor, expressed as the geometric mean of the absolute electronegativity of the 

constituent atoms, which is defined as the arithmetic mean of the atomic electron affinity and the 

first ionization energy. Ee is the energy of free electrons on the hydrogen scale, about equal to 4.5 

eV.  

 



The calculation for carrier densities Nd of C-M2P-CoOx/WO3 electrode. 

The carrier densities of the prepared C-M2P-CoOx/WO3 electrode could be estimated using the 

Mott–Schottky equation. [3] 

1/C2 = (2/e0εε0Nd)[(V − VFB) − kT/e0]                         (3) 

Where C is the specific capacitance (F cm-2), e0 is the electron charge, ε is the dielectric constant of 

WO3 (ε = 20), ε0 represents the permittivity of vacuum, Nd is the carrier density, V is the electrode 

applied potential, VFB is the flatband potential and kT/e0 is a temperature-dependent correction term. 

 

 

 

  



ABPE measurement [4] 

The applied bias photon-to-current efficiency (ABPE) was calculated from the LSV using the equation: 

ABPE(%) = 
.

	 ×100%                          (4)         

Where VRHE is the applied potential versus RHE, Jlight and Jdark are the measured photocurrent and dark 

current respectively, and Plight (mW cm-2) represnts the power density. 



IPCE measurement [5] 

IPCE measurement was carried out in a three-electrode setup with the assembled- electrode as the 

working electrode, platinum disk as counter electrode, and Ag/AgCl (3.0 M KCl) as reference electrode. 

IPCE was calculated according to equation: 

IPCE(%) = 	 ×100%                                                     (5)         

Where, J represents the photocurrent density (mA cm-2), λ is the wavelength of incident light (nm), and 

I is the intensity of the incident light (mW cm-2). 

 

 

         



The calculation for the lifetime τm based on Open circuit voltage decay (OCVD) plots. [6] 

The calculated decay lifetime of each V−t profiles by fitting to a biexponential function with two time 

constants: 

	 	 / / 	                                            (6) 

/ 	                                                      (7) 

where τm is the harmonic mean of the lifetime and the total half life is log(2 × τm).  
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