Electronic Supplementary Information for:

CO Activation and Methanation Mechanism on Hexagonal Close-packed Co Catalysts: Effect of Functionals, Carbon Deposition and Surface Structure

Hai-Yan Su, Changlin Yu, Jin-Xun Liu, Yonghui Zhao, Xiufang Ma, Jie Luo, Chenghua Sun, Wei-Xue Li* and Keju Sun*

S1 .	Effect of ZPE corrections on Co(0001)	2
S2.	Adsorption energies, geometries and coverages of intermediates on Co(0001)	3
S3 .	Energetic, geometries and rates for elementary reactions on Co(0001)	4
S4 .	Energetic for CH ₂ O and CHOH on various Co surfaces	5
S5 .	Effect of temperatures on species coverages and reaction order on Co(0001)	6
S6 .	Effect of functionals on the adsorption energies of C_1 -oxygenates on Co(0001)	7
S7 .	Microkinetic modeling	8

Reactions	$\Delta E_{ m act}$		ΔH	
	No ZPE	ZPE	No ZPE	ZPE
CO*+H*→CHO*+*	1.23	1.28	1.08	1.19
$CO^{+}H^{+}\rightarrow COH^{++}$	1.85	1.77	0.85	0.96
$\mathrm{CHO}^{*+*} {\rightarrow} \mathrm{CH}^{*+}\mathrm{O}^{*}$	0.63	0.58	-0.73	-0.77
$CHO*+H* \rightarrow CH_2O*+*$	0.45	0.43	0.23	0.33
$CHO*+H* \rightarrow CHOH*+*$	1.17	1.05	0.43	0.51
$CH_2O^{*+*}\rightarrow CH_2^{*+}O^{*}$	0.70	0.63	-0.65	-0.74

Table S1. The activation energies (ΔE_{act} in eV) and reaction energies (ΔH in eV) of selected surface reactions with or without ZPE corrections.

Table S2. Adsorption energies (ΔE_{ads} in eV) and the most stable adsorption sites of various intermediates in CO methanation on Co (0001). The ΔE_{ads} of H and O are calculated with respected to 1/2H₂ and 1/2O₂ in gas phase. The calculated coverages (θ in ML) of various intermediates in the microkinetic study at 503 K, 1atm and H₂/CO ratio of 2 are also listed. The coverages of CO and the vacant site are 8.71×10^{-1} and 1.08×10^{-3} , respectively.

Intermediates	$\Delta E_{ m Ads}$	Site	θ
Н	-0.53	fcc	1.27×10 ⁻¹
0	-2.62	hcp	1.02×10 ⁻⁵
С	-6.99	hcp	1.32×10 ⁻¹⁵
ОН	-3.65	O _{hcp}	3.96×10 ⁻⁷
СН	-6.42	C _{hcp}	2.56×10^{-10}
CH ₂	-3.98	C _{hcp}	2.30×10 ⁻¹¹
CH ₃	-1.97	C _{fcc}	9.27×10 ⁻⁸
СНО	-2.21	C _{bri} -hcp-O _{bri}	2.06×10 ⁻⁹
СОН	-4.27	C _{hcp}	2.16×10 ⁻⁷
CH ₂ O	-0.85	C _{bri} -hcp-O _{bri}	1.26×10 ⁻⁹
СНОН	-2.94	C _{hcp}	5.73×10 ⁻¹²
CH ₃ O	-2.81	O _{hcp}	8.12×10 ⁻⁴
CH ₂ OH	-1.58	C _{bri}	2.07×10^{-12}
НСОО	-3.06	O_{top} - O_{top}	1.34×10 ⁻¹¹
СООН	-2.24	C _{top} -hcp-O _{bri}	1.14×10 ⁻¹³
H ₂ O	-0.28	O _{top}	2.48×10 ⁻²¹

Table S3. Activation energies (ΔE_{act} in eV) and reaction energies (ΔH in eV) of forward reactions and distance of C-O, C-H or O-H (*d* in Å) at the TSs for various elementary steps in CO methanation on Co (0001). ΔE_{act} and ΔH are calculated with respected to separate adsorbed states. * and X* denote the vacant site and adsorbed X species, respectively. The calculated rates (*r* in s⁻¹site⁻¹) of various elementary steps in the microkinetic study at 503 K, 1atm and H₂/CO ratio of 2 are also listed.

Reactions	$\Delta E_{\rm act}$	ΔH	d	r
CO*+*=C*+O*	2.35	0.67	1.83	2.51×10 ⁻¹⁴
CO*+H* = CHO*+*	1.23	1.08	1.30	6.17×10 ⁻⁶
CO*+H* = COH*+*	1.85	0.85	1.33	8.88×10-8
CHO*+*=CH*+O*	0.68	-0.73	1.78	3.12×10 ⁻⁶
COH*+*=C*+OH*	1.58	0.09	2.02	3.01×10 ⁻¹³
CHO*+H*=CHOH*+*	1.17	0.43	1.37	2.21×10-9
COH*+H*=CHOH*+*	0.70	0.66	1.45	2.38×10-7
$CHO*+H*=CH_2O*+*$	0.45	0.23	1.58	1.80×10-6
$CH_2O^{*+*}=CH_2^{*+}O^{*}$	0.70	-0.65	1.82	1.50×10-6
CHOH*+*=CH*+OH*	0.67	-0.89	1.88	1.10×10 ⁻⁸
$CHOH*+H*=CH_2OH*+*$	0.67	0.26	1.55	8.00×10 ⁻⁸
$CH_2O*+H*=CH_3O*+*$	0.58	-0.38	1.58	1.22×10-7
$CH_2O*+H*=CH_2OH*+*$	1.07	0.46	1.38	8.75×10-9
$CH_2OH^{*+*}=CH_2^{*+}OH^{*}$	0.53	-0.84	1.98	8.87×10 ⁻⁸
CH ₃ O*+*=CH ₃ *+O*	1.38	-0.42	1.90	1.35×10-7
C*+H*=CH*+*	0.72	-0.32	1.69	3.26×10 ⁻¹³
$CH*+H*=CH_2*+*$	0.55	0.31	1.61	3.13×10-6
CH ₂ *+H*=CH ₃ *+*	0.54	-0.16	1.74	4.72×10 ⁻⁶
$CH_3*+H*=CH_4+2*$	1.04	0.04	1.60	4.85×10-6
$CO^{+}O^{-}CO_{2}+2^{+}$	1.37	1.03	1.63	1.74×10 ⁻⁶
O*+H* = OH*+*	1.22	0.28	1.33	6.01×10 ⁻⁶
$OH^{+}H^{=}H_{2}O^{+}*$	1.49	0.60	1.51	7.11×10 ⁻¹⁰
$2OH^{*}=H_{2}O^{*}+O^{*}$	0.57	0.32	1.41	3.05×10-6
CO*+OH*=COOH*+*	1.31	0.94	1.43	1.22×10 ⁻¹⁰
$COOH^*=CO_2+H^*$	1.00	-0.19	1.43	1.22×10 ⁻¹⁰
CHO*+O*=HCOO*+*	0.66	-0.29	1.82	6.02×10 ⁻⁸
$HCOO^*=CO_2+H^*$	0.94	0.24	1.37	6.02×10 ⁻⁸

Surfaces	$\Delta E_{ads}(CH_2O)$	$\Delta E_{ads}(CHOH)$	ΔE
Co(0001)	-0.85	-2.94	0.21
Co(10-10)	-0.94	-2.92	0.32
Co(11-20)	-1.23	-3.04	0.48
Co(10-12)	-1.37	-3.14	0.53
Step	-1.28	-3.01	0.58
Co(10-11)	-1.39	-2.97	0.71

Table S4. Adsorption energies (ΔE_{ads} in eV) of CH₂O and CHOH, and the total energy difference ΔE between adsorbed CHOH and CH₂O intermediates on various Co surfaces.

Figure S1. (a) The coverage of intermediates and (b) the reaction order as a function of temperature on Co(0001).

Figure S2. The effect of functionals on the adsorption energy ΔE_{ads} of the C₁-oxygenate intermediates on Co(0001).

Microkinetic Modeling

The reaction rate constant (k) is given by the Eying equation based on the transitionstate theory:

where k_B , *T*, *h* and ΔE_{act} represent the Boltzmann constant, absolute temperature, Planck constant and activation energy, respectively. The rate constant of adsorption (k_{ads}) is calculated by the following:

$$k_{\rm ads} = \frac{S \cdot P \cdot A}{\sqrt{2\pi m k_B T}} \tag{2}$$

where *S*, *P*, *A* and m are the sticking coefficient, partial pressure of the adsorbed species, the area of the adsorption site and the molecular mass of adsorbed species, respectively. The value of *S* is assumed to be one for all the species, since it is not very sensitive to the kinetic results.

The rate constant of desorption is calculated as

where σ , θ_{rot} and E_{des} are the symmetry number, the characteristic temperature for rotation of adsorbed species and the activation energy of desorption.

Microkinetic simulations are performed by the MKMCXX program.^[1] The reaction temperature ranges from 483 K to 573 K, and the total pressure is kept at 1 atm with H₂/CO ratio of 2. The degree of thermodynamic rate control $X_{RC,i}$ of step (*i*),^[2] which can qualitatively determine the significance of single step (*i*) in the overall reaction, is defined as

$$X_{RC,i} = \frac{k_i}{r} \left(\frac{\partial r}{\partial k_i}\right)_{k_{j\neq i},K_i} = \left(\frac{\partial \ln r}{\partial \ln k_i}\right)_{k_{j\neq i},K_i} \tag{4}$$

where k_i , K_i and r are the rate constant, the equilibrium constant for elementary step i and the reaction rate, respectively.

It is well-known that DFT methods do a poor job of treating CO adsorption on transition metal surfaces. Herein, we determined the CO adsorption energy of -1.30 eV from our experimental TPD data.^[3] The CO adsorption energy is adjusted to experimental value by only adjusting the energy of gaseous CO, and the ΔG of surface reactions are preserved.

References

- [1] I. A. W. Filot, R. A. van Santen, E. J. M. Hensen, Angew. Chem. Int. Ed. 2014, 53, 12746-12750.
- [2] C. Stegelmann, A. Andreasen, C. T. Campbell, J. Am. Chem. Soc. 2009, 131, 8077-8082.
- [3] J. W. Wu, J. Chen, Q. Guo, H. Y. Su, D. X. Dai, X. M. Yang, Surf. Sci. 2017, 663, 56-61.