Electronic Supplementary Information

Coking-resistant dry reforming of methane over BNnanoceria interface-confined Ni catalysts

Meirong Lu,^a Xiaoyu Zhang,^a Jiang Deng,^a Sanchai Kuboon,^b Kajornsak

Faungnawakij,^b Shengxiong Xiao,*c and Dengsong Zhang*a

^a Department of Chemistry, Research Center of Nano Science and Technology, College

of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P.R. China

^b National Nanotechnology Center, National Science and Technology Development

Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand

^c Department of Chemistry, Shanghai Normal University, No.100 Guilin Road, Shanghai 200234, P.R. China

Corresponding author: E-mail: xiaosx@shnu.edu.cn, dszhang@shu.edu.cn.

Fig. S1 XRD patterns of Ni/NC and Ni/NC@BN catalysts.

Fig. S2 SEM images of (a) the spent Ni/NC catalyst after 20 h DRM reaction and (b) the spent Ni/NC@BN catalyst after 100 h DRM reaction.

Fig. S3 C1s XPS spectra of (a) the spent Ni/NC@BN catalyst after 100 h of DRM reaction and (b) the spent Ni/NC catalyst after 20 h of DRM reaction and zoomed in spectra in the range of 288–291 eV.

Fig. S4 Enlarged figures of transient reactions over Ni/NC@BN and Ni/NC catalysts.

Fig. S5 (a) 2D and (b) 3D *in situ* DRIFTs of DRM reaction over Ni/NC@BN catalyst where CH_4 and CO_2 with a flow rate of 25 mL/min was adsorption on the catalyst at 650 °C for 1 min and then CO_2 feed was switched off.

Fig. S6 XPS spectra for (a) Ni 2p and (b) Ce 3d of Ni/NC and Ni/NC@BN catalysts.

Fig. S7 O 1s XPS spectra of Ni/NC and Ni/NC@BN catalysts.

Fig. S8 O₂-TPD profiles of Ni/NC and Ni/NC@BN catalyst.

Table S1 The concentration of O_{α} from XPS and the corresponding desorption quantity of O_2 from O_2 -TPD.

Catalyst	Concentration of $O_{\alpha}(\%)$	O ₂ desorption quantity (mmol/g)
Ni/NC	64.6%	0.074
Ni/NC@BN	68.7%	0.106

	Ni		Specific		CH ₄ conversion ^d			TOF
Catalysts	loading	Temp.	Time	surface area ^b	dispersion	persion (Initial	(%)	ror e
		(°C)	X (h)				after 6h	CH4
	" (%)			$(m^2 g^{-1})$	° (%)		reaction	(n ¹)
Ni/NC	6.83	550	6	16.8	1.45%	19.4	7.1	3217
Ni/NC@BN	7.31	550	6	16.4	0.42%	13.8	9.8	14218

Table S2 The TOF_{CH4} of the as-prepared catalysts during the DRM reaction at 550 °C and textural properties of the reduced catalysts.

^{*a*} Ni loading were measured by ICP.

^b Specific surface area of the catalysts determined by the BET method.

^c Ni dispersion was measured by H₂ pulse chemisorption.

^d The CH₄ conversion was tested at 550°C with a CH₄ flow rate of 45 mL/min.

^e The value of TOF was tested at 550°C with a CH₄ flow rate of 45 mL/min.

The textural properties of the as-prepared catalysts were investigated by N₂ adsorption–desorption techniques. As shown in Table S1, the BET specific surface area of Ni/NC was 16.8 m² g⁻¹ and the BET specific surface area of Ni/NC@BN was 16.4 m² g⁻¹. The Ni dispersions of Ni/NC and Ni/ NC@BN catalysts are 1.45% and 0.42%. The dispersion value of Ni/NC@BN was a bit lower than that of Ni/NC. The reduced ability of hydrogen chemisorption for Ni/NC@BN catalyst is likely caused by the strong metal support interaction (SMSI) between nickel and CeO₂, which blocks the Ni active sites for hydrogen chemisorption^[1, 2]. In addition, the better coke resistance of Ni/NC@BN could be attributed to the –OH species on the surface of BN. The strong interaction between Ni and BN-nanoceria (NC) interfaces plays a key role in suppressing metal sintering. Therefore, the excellent coking and sintering resistance makes the catalyst maintain better stability.

References

[1] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights, Appl. Catal. B-Environ. 230 (2018) 220-236.

[2] H. Ay, D. Üner, Dry reforming of methane over CeO₂ supported Ni, Co and Ni–Co catalysts, Appl. Catal. B-Environ. 179 (2015) 128-138.