Supplementary Information for

Domino Lignin Depolymerization and Reconnection to Complex Molecules Mediated by Boryl Radicals

Longcheng Hong ${ }^{1}$, Astrid Spielmeyer ${ }^{2}$, Janin Pfeiffer ${ }^{2} \&$ Hermann A. Wegner ${ }^{1 *}$
${ }^{1}$ Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392
Giessen, Germany and Center for Materials Research (LaMa), Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
${ }^{2}$ Justus Liebig University, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff- Ring 17, Giessen, 35392, Germany.

*Corresponding author, E-mail: Hermann.A.Wegner@org.Chemie.uni-giessen.de

Contents

General 3
Synthesis of the catalyst and substrates 4
Optimization of reaction conditions 13
General procedure for the radical cleavage of model compounds 16
Analytical data of the domino depolymerization/ reconnection products 20
Control experiments and mechanistic discussion 25
Lignin extraction 29
Lignin oxidation 33
Quantitative ${ }^{31} \mathbf{P}$ NMR analysis of lignin and oxidized lignin 36
Lignin degradation 38
GPC analysis 40
Quantitative LC-MS/MS analysis 43
References 46

General

All solvents were purchased from Fisher Scientific, Sigma-Aldrich or Acros and were used as received. Technical grade solvents for extraction and column chromatography were bulb-to-bulb distilled prior to usage. Air sensitive reactions were set up using dry glassware and Schlenk technique. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR experiments were performed at $25{ }^{\circ} \mathrm{C}$ on a Bruker DPX-NMR ($400 \mathrm{MHz}, 600 \mathrm{MHz}$) at $25^{\circ} \mathrm{C}$ unless otherwise stated. Chemical shifts are reported in parts per million (ppm) related to solvent peek, coupling constants (J) are reported in Hertz (Hz). NMR-solvents were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA) or Deutero GmbH. The multiplicities are written as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and their combinations, such as $d d=$ doublet of a doublet. Multiplets are reported as a span of their middle. Thin layer Chromatography (TLC) was carried out on silica gel $60 \mathrm{~F}_{254}$ glass plates with a 0.25 mm layer or Polygram ${ }^{\circledR}$ Alox $\mathrm{N} / \mathrm{UV}_{254}$ with a 0.2 mm -coating and detected with a CAMAG UV Cabinet dual wavelength, $254 / 366 \mathrm{~nm}$ or stained by p-anisaldehyde stain or phosphomolybdic acid (PMA) stain. Column chromatography was performed using silica gel $60(0.040-0.063 \mathrm{~mm})$. High resolution mass spectrometry (HRMS) was determined with a Thermo Scientific LTQ FT Ultra spectrometer (ESI) using methanol solutions of the respective compounds or a Finnigan MAT95 sectorfield spectrometer (EI). The UV/Vis spectra were recorded with a JASCO V-670 spectrophotometer (spectral range: 190-2500 nm, resolution: \geq 0.1 nm).

Synthesis of the catalyst and substrates

4-(Pyridin-4-yl)benzonitrile ${ }^{1}$

A mixture of 4-bromobenzonitrile ($910 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ eq.), pyridin-4-ylboronic acid ($738 \mathrm{mg}, 6.00 \mathrm{mmol}, 1.20 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{pddf}) \mathrm{Cl}_{2}$ ($204 \mathrm{mg}, 0.250 \mathrm{mmol}, 5.00 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($1.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.00$ eq.) and 1,2-dimethoxyethane (DME) (15.0 mL) and water (5.0 mL) was stirred at reflux under nitrogen for 40 h . After cooling to rt, the resulting mixture was diluted with 100 mL ethyl ether and then filtered. The filtrate was washed with saturated NaCl solution $(75.0 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then purified by column chromatography on silica gel to give 4-(pyridin-4-yl)benzonitrile as a white solid ($821 \mathrm{mg}, 91 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72\left(\mathrm{dd},{ }^{3} J=4.4 \mathrm{~Hz},{ }^{4} J=1.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.78 (dd, ${ }^{3} J=6.4 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (dd, ${ }^{3} J=6.4 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}$, 2 H), 7.49 (dd, ${ }^{3} J=4.4 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$). Spectroscopic data for the title compound was consistent with the literature. ${ }^{1}$

Synthesis of the model compounds 1aa, 1ab, 1ba, 1bb, 1cb, 1db

General procedure A: Nucleophilic substitution reaction of 2-bromoacetophenone substrates with phenol compounds.

A 250 mL round bottom flask equipped with a reflux condenser and a dropping funnel was charged with phenol ($12.6 \mathrm{mmol}, 1.26$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.50$ eq.) in acetone (50.0 mL) and stirred at rt . To this solution, 2-bromoacetophenone ($10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetone (50.0 mL) was added dropwise over 30 min at rt . The resulting suspension was stirred at reflux for 4 h . Afterward the suspension was filtered and concentrated in vacuo. The crude product was purified by recrystallization
from ethyl acetate/cyclohexane to obtain the product.

General procedure B: Bromination of acetophenone derivatives with pyridinium tribromide.

The acetophenone derivative ($20.0 \mathrm{mmol}, 1.00$ eq.) and pyridinium tribromide (20.0 mmol, 1.00 eq.) were dissolved in EtOAc (200 mL). The mixture was stirred for 2 h at rt. Saturated $\mathrm{NaHSO}_{3}(200 \mathrm{~mL})$ was used to quench the reaction. The EtOAc layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. Crystallization from ethyl acetate/cyclohexane afforded the brominated product.

General procedure C: Aldol addition of 1-aryl-2-phenoxylethanones with formalin.

To a solution of 1-aryl-2-phenoxylethanone substrate (1.00 eq.) in EtOH/acetone ($\mathrm{v}: \mathrm{v}$ $1: 1,0.100 \mathrm{~m}$) containing $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.10 eq.) was added formalin solution ($37 \mathrm{wt} . \%$, 1.60 eq.). The resulting mixture was stirred at rt for 2 h and then filtered, washed with acetone and concentrated in vacuo to give the crude product as an orange-pink oil. Purification by column chromatography (EtOAc/cyclohexane) was applied to obtain the product.

1-Phenyl-2-phenoxylethanone (1aa) ${ }^{2}$: According to the General procedure A, 1-phenyl-2-phenoxylethanone was obtained as white crystal in 53%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01\left(\mathrm{dt},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.61\left(\mathrm{tt},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.4\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 7.51\left(\mathrm{dt},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.94-7.01(\mathrm{~m}$, $3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{2}$

1-Phenyl-2-(2-methoxyphenoxy)-ethanone (1ab) ${ }^{2}$: According to the General procedure A, 1-phenyl-2-(2-methoxyphenoxy)-ethanone was obtained as light-yellow crystalline needles in $85 \%{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01\left(\mathrm{dt},{ }^{3} J=7.0 \mathrm{~Hz},{ }^{4} J=\right.$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60\left(\mathrm{tt},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49\left(\mathrm{dt},{ }^{3} J=7.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}\right.$, 2H), 6.94-6.99 (m, 1H), 6.90-6.92 (m, 1H), 6.84-6.87 (m, 2H), 5.35 (s, 2H), 3.88 (s, $3 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{2}$

1-(4-Methoxyphenyl)-2-phenoxylethanone (1ba) ${ }^{2}$: According to the General procedure A, 1-(4-methoxyphenyl)-2-phenoxylethanone was obtained as white crystalline sheets in $66 \%{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00\left(\mathrm{dt},{ }^{3} J=8.9 \mathrm{~Hz},{ }^{4} J=\right.$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28\left(\mathrm{tt},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.93-7.00(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{2}$

1-(4-Methoxyphenyl)-2-(2-methoxyphenoxy)-ethanone (1bb) ${ }^{2}$: According to the

General procedure A, 1-(4-methoxyphenyl)-2-(2-methoxyphenoxy)-ethanone was obtained as light-yellow crystals in $73 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00\left(\mathrm{dt},{ }^{3} J\right.$ $\left.=8.9 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.92-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 2 \mathrm{H})$, $5.27(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{2}$

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)-ethanone (1cb) ${ }^{2}$: According to the General procedure $B \& A$, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-ethanone was obtained as white crystals from 3,4-dimethoxyphenylethanone in 70% overall yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68\left(\mathrm{dd},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{~d}$, $\left.{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~s}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{2}$

1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)-ethanone (1db): To a solution of sodium methoxide $(0.54 \mathrm{~g})$ in THF $(20 \mathrm{~mL})$ was added phenol $(0.94 \mathrm{~g})$, the mixture was stirred at rt for 1 h to get sodium phenolate. Then, 2-bromo-1-(4-hydroxyphenyl)ethanone (2.16 g) was added, and the mixture was stirred for another 5 h . Afterwards, the solvent was removed by evaporation under reduced pressure. The residue was purified by column chromatography over silica gel to obtain the product as a white solid ($326 \mathrm{mg}, 13 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.90\left(\mathrm{dt},{ }^{3} J=\right.$ $\left.8.8 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.98\left(\mathrm{dd},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.86-6.91(\mathrm{~m}, 3 \mathrm{H})$,
6.81-6.84 (m, 2H), $5.40(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO): δ 192.7, 162.5, 149.0, 147.6, 130.5, 126.1, 121.3, 120.6, 115.4, 113.6, 112.5, 70.4, 55.6.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$281.0784, found: 281.0785.

$\mathrm{mmol}, 1.00 \mathrm{eq}$.) and benzylchloride ($2.9 \mathrm{ml}, 25.0 \mathrm{mmol}, 1.00$ eq.) were dissolved in DMF (25.0 ml). Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.20$ eq.) was added, and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 5.5 h . The mixture was cooled to rt and poured into water (150 ml), further cooled on an ice bath, and acidified with concentrated HCl . The product was extracted with ethyl acetate. The organic phase was washed with 2 m NaOH , water, and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the crude product was recrystallized from ethyl acetate/cyclohexane, yielding S1 as lightyellow crystals ($5.80 \mathrm{~g}, 81 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{3}$

1-(4-(Benzyloxy)-3,5-dimethoxyphenyl)-2-bromoethanone (S2) ${ }^{3}$: According to the General procedure B, S2 was obtained as light-yellow crystals from S1 in $\mathbf{4 5 \%}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 5.12$ $(\mathrm{s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H})$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{3}$

1-(4-Benzyloxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)-ethanone
According to the General procedure A, 1eb was obtained as yellow powder from $\mathbf{S} \mathbf{2}$ in 73%. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.94-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.87$ (s, 9H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.9, 153.6, 149.8, 147.5, 142.1, 137.4, $130.0,128.5,128.3,128.1,122.6,120.9,114.8,112.2,105.9,75.1,72.5,56.4,55.9$; HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 431.1465$, found: 431.1464.

1-(3,4-Dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)-propan-1-one (1'-cb) ${ }^{4}$: According to the General procedure C, 1'-cb was obtained as white solid from 1cb in 79%. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75\left(\mathrm{dd},{ }^{3} J=5.6 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $7.61(\mathrm{~d}$, $\left.{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99\left(\mathrm{dt},{ }^{3} J=5.6 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.91\left(\mathrm{dd},{ }^{3} J=5.4 \mathrm{~Hz},{ }^{4} J=\right.$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.82\left(\mathrm{dt},{ }^{3} J=5.0 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.40\left(\mathrm{t},{ }^{3} J=\right.$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $\left.{ }^{3} J=4.4 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.17\left(\mathrm{t},{ }^{3} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{4}$

1-(3,5-Dimethoxy-4-benzyloxy-phenyl)-3-hydroxy-2-(2-methoxyphenoxy)-propan-1one ($\mathbf{1}^{\prime}$-eb) $)^{5}$: According to the General procedure $C, \mathbf{1}^{\prime}$-eb was obtained as white solid from 1eb in $71 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 6.98\left(\mathrm{dt},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89\left(\mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.82\left(\mathrm{dt},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.36\left(\mathrm{t},{ }^{3} J=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $4.09\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.34\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 195.7,153.4,150.3,146.8,142.1,137.3,130.2,128.4$, $128.3,128.1,123.6,121.2,118.0,112.3,106.5,84.3,75.0,63.6,56.3,55.8$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{5}$

1-(3,5-Dimethoxy-4-hydroxy-phenyl)-3-hydroxy-2-(2-methoxyphenoxy)-propan-1one $\left(\mathbf{1}^{\prime} \mathbf{- f b}\right)^{5}$: According to the literature's method, a solution of compound $\mathbf{1}^{\prime}$-eb (1.58 $\mathrm{g}, 3.60 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and pentamethylbenzene (1.62 \mathrm{~g}, 10.8 \mathrm{mmol}, 3.00 \mathrm{eq}$.$) in$ dicholoromethane (15.0 mL) under N_{2} was cooled to $-78^{\circ} \mathrm{C}$ in liquid $\mathrm{N}_{2} /$ acetone bath. To this mixture, $\mathrm{BCl}_{3}(7.2 \mathrm{~mL}, 1 \mathrm{~m}$ solution in DCM, $7.20 \mathrm{mmol}, 2.00$ eq.) was added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min upon which the reaction was quenched with MeOH . The organic layer was immediately loaded onto celite and purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ cyclohexane, $1: 1)$ to obtain the product $\mathbf{1}^{\mathbf{1}} \mathbf{- f b}(593 \mathrm{mg}, 47 \%)$ as pale-yellow powder. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.41(\mathrm{~s}, 2 \mathrm{H}), 6.99$ (ddd, $\left.{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=7.2 \mathrm{~Hz},{ }^{5} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88-6.92(\mathrm{~m}, 2 \mathrm{H})$, $6.82\left(\mathrm{ddd},{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=7.2 \mathrm{~Hz},{ }^{5} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.34\left(\mathrm{dd},{ }^{3} J=6.2\right.$ $\left.\mathrm{Hz},{ }^{4} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 195.3,150.5,147.0,146.9,140.6,126.5,123.7,121.3,118.1,112.4$, 106.6, 84.6, 63.8, 56.6, 55.9. Spectroscopic data for the title compound was consistent with the literature. ${ }^{5}$

Optimization of reaction conditions

The pyridine catalyst, 4-(pyridin-4-yl)benzonitrile, which has been shown to be most active, ${ }^{6}$ was chosen for the optimization. The radical degradation was initially performed with a higher concentration of 1aa in dry toluene (1.0 m). To our delight, after 18 h , the reaction worked efficiently and the lignin model compound $\mathbf{1 a a}$ was almost completely converted (by ${ }^{1} \mathrm{H}$ NMR spectroscopy, Fig. S1).

$\begin{array}{lllllllllllllllllllllllllllllllllllll}8.8 & 8.6 & 8.4 & 8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4 & 2\end{array}$

Figure S1. Initial NMR study of the radical process. ${ }^{1} \mathrm{H}$ NMR spectra: 4-(pyridin-4-yl)benzonitrile (A), lignin model compound 1aa $\mathbf{(B)}$ and the reaction mixture (C). The signal highlighted in red originates from substrate 1aa, while the signal highlighted in blue blanket is from the acetophenone product.

However, the isolated yield of the degraded product acetophenone was about 40% which was significantly lower than the conversion. To determine the reaction yield more reliably, calibration curves for GC-MS analysis have been prepared for lignin model 1aa, acetophenone, phenol with n-undecane as standard (Fig. S2).

Figure S2. Calibration curves of phenol, acetophenone and lignin model 1aa using n-undecane as standard.

The optimization of the reaction conditions was started by screening the concentration, followed by the solvent and temperature. All results were summarized in Table S1.

Table S1. Optimization of the radical degradation of lignin model compound $\mathbf{1 a a}{ }^{a}$.

Entry	Concentration of 1aa (M)	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	Solvent	Equivalent of $\mathbf{2}$	Conversion $\mathbf{(\%)}$	Yield (\%) $^{\boldsymbol{b}}$	
			3a	4a			
$\mathbf{1}$	0.1	110	Toluene	1.5	29	14	21
$\mathbf{2}$	0.25	110	Toluene	1.5	52	46	37
$\mathbf{3}$	0.5	110	Toluene	1.5	85	66	35
$\mathbf{4}$	1.0	110	Toluene	1.5	93	52	43
$\mathbf{5}$	0.25	90	Toluene	1.5	48	39	27
$\mathbf{6}$	0.25	130	Toluene	1.5	99	53	38
$\mathbf{7}$	0.25	110	$1,4-$ dioxane	1.5	87	60	37
$\mathbf{8}$	0.25	110	Diglyme	1.5	99	55	47
$\mathbf{9}$	0.25	110	n-octane	1.5	67	37	60
$\mathbf{1 0}$	0.25	110	DMSO	1.5	10	10	7
$\mathbf{1 1}$	0.25	110	DMF	1.5	>99	$72(47)$	$78(51)$
$\mathbf{1 2}$	0.25	140	DMF	1.5	>99	$80(49)$	$87(58)$
$\mathbf{1 3}$	0.5	140	DMF	1.5	>99	$83(53)$	$91(60)$
$\mathbf{1 4}$	0.5	140	DMAc	1.5	91	13	66
$\mathbf{1 5}$	0.5	140	DMF	1.25	74	58	64
$\mathbf{1 6}$	0.5	140	DMF	2.0	>99	85	90

${ }^{\text {a }}$ Reaction conditions: under $\mathrm{N}_{2}, \mathbf{1 a a}(0.4 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathbf{2}$ (x equivalent) and catalyst (0.08 mmol) were dissolved in the stated solvent and stirred at the given temperature for 24 h .1 eq. of n-undecane was used as internal standard. ${ }^{\text {b }}$ The yield was determined by GC-MS using calibration curves; isolated yield was shown in parentheses.

The best reaction conditions obtained are as follows: 1.5 equiv. $\mathrm{B}_{2}(\mathrm{pin})_{2}, 20 \mathrm{~mol} \%$ of catalyst in DMF $(0.5 \mathrm{~m})$ at $140{ }^{\circ} \mathrm{C}$ for 24 h gave the best GC conversion of $>99 \%$ and a GC-yield of 83% and 91% of acetophenone (3a) and phenol (4a), respectively (entry 13). Yields of 61% and 77% for acetophenone and phenol were obtained via column chromatography without any aqueous work up.

Figure S3. Explanation for the beneficial effect of DMF as solvent: DMF supports formation of the boryl radical.

In addition, the sensitivity of this radical process was evaluated by exposing the reaction to air or $\mathrm{H}_{2} \mathrm{O}$. The test reactions were performed according to the standard procedure and exposed to air and analysed by GC-MS after 24 h . Although, conversion was not as good as under N_{2} after 24 h (Fig. S4, Eq. S1 \& S2), the observation of the expected acetophenone and phenol degradation products demonstrate that the radical intermediate can survive for a short time in the presence of O_{2} and $\mathrm{H}_{2} \mathrm{O}$. To accelerate the transformation, the reaction was tested in the microwave. Although the reaction was not faster, the lignin model compound was almost completely converted after 24 h (85% conversion determined by GC-MS) giving the degradation product acetophenone in a GC yield of 82% (Eq. S3).

Figure S4. Reaction test under exposure to air and $\mathrm{H}_{2} \mathrm{O}$ and in the microwave.

General procedure for the radical cleavage of model compounds

General procedure D: Substrate (1.00 eq.), $\mathrm{B}_{2}(\mathrm{pin})_{2}(1.50$ eq. for model compounds $\mathbf{1 a a}, \mathbf{1 b a}, \mathbf{1 a b}, \mathbf{1 b b}, \mathbf{1 c b}, \mathbf{1 d b}, \mathbf{1 e b} ;$ while 3.00 eq. were used for $\mathbf{1}^{\prime}$-cb, $\mathbf{1}^{\prime}$-eb, $\mathbf{1}^{\prime}$ '-fb), 4-(4-pyridinyl)benzonitrile ($20.0 \mathrm{~mol} \%$) were added into a Schlenk tube charged with a magnetic stir bar under N_{2}. The colour of the solid mixture turned into blue gradually. Then, 1.0 mL of dry DMF was added to dissolve the components. The reaction mixture was then stirred at $140{ }^{\circ} \mathrm{C}$. After 24 h , the reaction mixture was cooled and quenched with aq. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~mL})$. The resulted mixture was stirred under air for 1 h , neutralized by aq. $\mathrm{HCl}(1 \mathrm{~m})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo to give the crude product. Purification by column chromatography (EtOAc/cyclohexane) and monitor with TLC and p-anisaldehyde stain was applied to obtain the product.

Radical cleavage of 1aa (11.1 mmol scale): Model compound 1aa ($2.36 \mathrm{~g}, 11.1$ mmol, 1.00 eq. $), \mathrm{B}_{2}(\mathrm{pin})_{2} \quad(4.23 \mathrm{~g}, \quad 16.6 \mathrm{mmol}, \quad 1.50 \mathrm{eq}$.$) and 4-(4-$ pyridinyl)benzonitrile ($0.400 \mathrm{~g}, 2.22 \mathrm{mmol}, 20.0 \mathrm{~mol} \%$) were subjected to the General procedure D described above. The reaction mixture was purified by column chromatography (acetone/cyclohexanes: $1 / 50$) without any work-up obtaining acetophenone 3a ($824 \mathrm{mg}, 62 \%$) and phenol $\mathbf{4 a}$ ($807 \mathrm{mg}, 77 \%$).

Radical cleavage of $\mathbf{1 a b}$ (0.5 mmol scale): Model compound $\mathbf{1 a b}$ ($121 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS analysis showed a conversion of 81%, and yields of 43% and 62% for acetophenone 3 a and guaiacol
$\mathbf{4 b}$, respectively. The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: 1/50) giving 3a ($24.0 \mathrm{mg}, 40 \%$) and $\mathbf{4 b}$ (35.0 $\mathrm{mg}, 56 \%)$.

Radical cleavage of 1ba (0.5 mmol scale): Model compound 1ba ($121 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS analysis showed a conversion of $>99 \%$, and yields of 54% and 56% for 1-(p-methoxy-phenyl)ethanone 3b and phenol 4a, respectively. The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: 1/50) giving 3b (36.0 mg , 43%) and 4 ($15.0 \mathrm{mg}, 32 \%$).

Radical cleavage of 1bb (0.5 mmol scale): Model compound $\mathbf{1 b b}$ ($136 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS analysis showed a conversion of 87%, and yields of 47% and 58% for 1-(p-methoxy-phenyl)-ethanone 3b and guaiacol 4b, respectively. The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: $1 / 50$) giving 3b ($32.0 \mathrm{mg}, 43 \%$) and 4b ($29.0 \mathrm{mg}, 47 \%$).

Radical cleavage of 1cb (0.5 mmol scale): Model compound 1cb ($151 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS analysis showed a conversion of $>99 \%$, and yields of 68% and 60% for 1-(3,4-dimethoxy-phenyl)ethanone $\mathbf{3 c}$ and guaiacol $\mathbf{4 b}$, respectively. The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: 1/40) giving 3c $(51.0 \mathrm{mg}$, 57%) and 4b ($30.0 \mathrm{mg}, 48 \%$).

Radical cleavage of $\mathbf{1 d b}$ (0.5 mmol scale): Model compound $\mathbf{1 d b}$ ($129 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS danalysis showed a conversion of 86% after 24 h . The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: 1/35) giving 1-(p-hydroxy-phenyl)ethanone 3d ($30.0 \mathrm{mg}, 44 \%$).

Radical cleavage of $\mathbf{1 e b}$ (0.5 mmol scale): Model compound $\mathbf{1 e b}$ ($204 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) was subjected to the General procedure D. GC-MS analysis showed a conversion of 86% after 24 h . The reaction mixture was worked up and purified by column chromatography (EtOAc/cyclohexane: $1 / 10$ to $1 / 4$) giving 1-(p-benzyloxy-phenyl)-ethanone 3 e ($73.0 \mathrm{mg}, 44 \%$) and guaiacol $\mathbf{4 b}$ ($27.0 \mathrm{mg}, 44 \%$).

Radical cleavage of $\mathbf{1}^{\prime}$-cb (0.5 mmol scale): Model compound $\mathbf{1}^{\prime}$-cb ($151 \mathrm{mg}, 0.500$ mmol, 1.00 eq.) with 1.50 eq. $\mathrm{B}_{2}(\mathrm{pin})_{2}$ was subjected to the General procedure D. The reaction mixture was worked up and purified by column chromatography (acetone/cyclohexanes: 1/40, then EtOAc/cyclohexane: $1 / 2$ to $1 / 1$) giving $5 \mathbf{c}(47.0 \mathrm{mg}$, 49%) and $\mathbf{4 b}$ ($41.0 \mathrm{mg}, 66 \%$). Another run of this reaction with 3.0 eq. $\mathrm{B}_{2}(\mathrm{pin})_{2}$ provided $\mathbf{5 c}$ in 69% yield (67.0 mg).

Radical cleavage of $\mathbf{1}^{\prime}$-cb (4.0 mmol scale): Model compound $\mathbf{1}^{\prime}$-cb ($1.33 \mathrm{~g}, 4.00$ mmol, 1.00 eq.), $\mathrm{B}_{2}(\mathrm{pin})_{2}(3.05 \mathrm{~g}, \quad 12.0 \mathrm{mmol}, 3.00 \mathrm{eq}$.$) and 4-(4-$ pyridinyl)benzonitrile ($144 \mathrm{mg}, 0.800 \mathrm{mmol}, 20.0 \mathrm{~mol} \%$) were subjected to the General procedure D. The reaction mixture was purified by column chromatography (EtOAc/cyclohexane: $1 / 2$ to $1 / 1$) giving a light brown crude product, which was then recrystallized from ethyl acetate providing $\mathbf{5 c}$ as white crystals ($483 \mathrm{mg}, 63 \%$).

Radical cleavage of $\mathbf{1}^{\prime}$-eb (1.2 mmol scale): Model compound $\mathbf{1}^{\prime}$-eb ($526 \mathrm{mg}, 1.20$ $\mathrm{mmol}, 1.00$ eq.) with 3.0 equivalent $\mathrm{B}_{2}(\mathrm{pin})_{2}$ was subjected to the General procedure D. The reaction mixture was worked up and purified by column chromatography (EtOAc/cyclohexane: $1 / 8$ to $1 / 1$) giving $\mathbf{5 e}(188 \mathrm{mg}, 52 \%)$ and guaiacol $\mathbf{4 b}(91.0 \mathrm{mg}$, 61\%).

Radical cleavage of $\mathbf{1}^{\mathbf{\prime}} \mathbf{- f b}$ (2.0 mmol scale): Model compound $\mathbf{1}^{\mathbf{\prime}-\mathbf{f b}}$ ($697 \mathrm{mg}, 2.00$ mmol, 1.00 eq.) with 3.0 equivalent $\mathrm{B}_{2}(\mathrm{pin})_{2}$ was subjected to the General procedure D. The reaction mixture was worked up and purified by column chromatography (EtOAc/cyclohexane: $1 / 5$ to $3 / 2$) giving the crude product of $\mathbf{5 f}$ ($241 \mathrm{mg}, 58 \%$), which was not pure enough for the characterization by NMR spectroscopy. Attempts for
purification by column chromatography or recrystallization did not improve the purity significantly. Finally, some powder (11.0 mg) was obtained in a second recrystallization in EtOAc/cyclohexane with several drops of methanol, which was pure and then characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HSQC NMR spectroscopy and ESI-MS. In this case, the accurate isolated yield is difficult to determine. Quantification by LCMS/MS was then performed in the third run of this reaction with a LC-MS yield of $\mathbf{5 f}$ of 77%.

Analytical data of the domino depolymerization/

 reconnection products

1,6-Bis(3,4-dimethoxyphenyl)-1,6-hexanedione (5c) ${ }^{\mathbf{7}}$: White solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59\left(\mathrm{dd},{ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 6.89 (d, $\left.{ }^{3} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.95(\mathrm{~s}, 6 \mathrm{H}), 3.94$ (s, 6H), 2.97-3.02 (m, 4H), 1.80-1.87 (m, 4H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): δ 198.9, 153.3, 149.2, 130.4, 122.8, 110.3, 110.1, 56.2, 56.1, 38.1, 24.5. Spectroscopic data for the title compound was consistent with the literature. ${ }^{7}$

1,6-Bis(3,5-dimethoxy-4-benzyloxy-phenyl)-1,6-hexanedione (5e): White solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.45-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~s}, 4 \mathrm{H}), 5.10$ $(\mathrm{s}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 12 \mathrm{H}), 2.99-3.03(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 198.9,153.5,141.5,137.5,132.5,128.6,128.3,128.1,105.7,75.1,56.4$, 38.3, 24.2; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$621.2459, found: 621.2460 .

1,6-Bis(3,5-dimethoxy-4-hydroxy-phenyl)-1,6-hexanedione (5f) ${ }^{\mathbf{8}}$: White powder. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 9.29$ (s, 2H), 7.25 (s, 4H), 3.83 (s, 12H), 3.01$3.05(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, d_{6}-DMSO): δ 198.3, 147.5, 140.7, 127.2, 105.9, 56.1, 37.2, 23.9. Spectroscopic data for the title compound was consistent with the literature. ${ }^{8}$

Control experiments and mechanistic discussion

Based on the reported mechanism of pyridine-ligated boryl radical, ${ }^{6,9,10}$ a plausible reaction mechanism of the boryl radical cleavage of $\mathrm{C}-\mathrm{O}$ ether bond in the model compounds was proposed in Scheme S1. The catalytic cycle of boryl radical cleavage of $\mathrm{C}-\mathrm{O}$ ether bond was initiated by the homolytical cleavage of the $\mathrm{B}-\mathrm{B}$ bond of $(\text { Bpin })_{2}$ by 4-(pyridin-4-yl)benzonitrile (Cat.). The generated pyridine-ligated boryl radical (Int-1) underwent a radical addition with the carbonyl group in the model compounds leading to a ketyl radical intermediate (Int-2). Subsequently, an intramolecular single electron transfer (SET) process triggered the cleavage of $\mathrm{C}-\mathrm{O}$ ether bond. Further radical coupling of the released phenyl oxide radical with another boryl radical formed the pinacol phenolate borate which was finally transformed into corresponding phenol by deborylation with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. Meanwhile, the generated pinacol enolate borate intermediate (Int-3) could release the cleaved product acetophenone in the present of excess amount of (Bpin) ${ }_{2}$ furnishing the pyridine-ligated boryl radical to the next cycle.

Scheme S1. Proposed mechanism of the boryl radical cleavage of $\mathrm{C}-\mathrm{O}$ ether bond in oxidized lignin model compounds.

To probe the mechanism of radical dimerization, benzylic alcohol and 3-phenyl-propan-1-ol were selected to evaluate the stability of aliphatic hydroxy groups in the radical process. 1-(3,4-Dimethoxyphenyl)-2-en-1-propone (7) and 1-(3,4-dimethoxyphenyl)-3-hydroxy-1-propanone (6) were chosen to differentiate between route A-a and A-b (Fig. 6, main manuscript). Benzylic alcohol, 3-phenyl-propan-1-ol were purchased from Fisher Scientific International, Inc. and were used directly as received, 6 and 7 were synthesized according to the literatures' method as described below. ${ }^{11,12}$

1-(3,4-Dimethoxyphenyl)-2-en-1-propone (7) ${ }^{13}$: To a mixture of 1-(3,4-dimethoxyphenyl)-ethanone ($3.60 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and paraformaldehyde$ ($1.20 \mathrm{~g}, 40.0 \mathrm{mmol}, 2.00$ eq.) in dry THF (30.0 mL) was added the ammonium salt (freshly prepared before use, $4.30 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ eq.) and trifluoroacetic acid ($154 \mu \mathrm{~L}, 2.00 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$). The reaction mixture was stirred open to the atmosphere at reflux for 2 h . The mixture became clear. The reaction mixture was cooled down to rt and another portion of paraformaldehyde ($1.20 \mathrm{~g}, 40.0 \mathrm{mmol}, 2.00$ eq.) was added. The reaction mixture was stirred at reflux for an additional 4 h open to the atmosphere. The reaction mixture was cooled down and the solvent was removed under reduced pressure, dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and washed with HCl solution (1 $\mathrm{m}), \mathrm{NaOH}$ solution (1 m), and brine. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by silica gel column chromatography using EtOAc/cyclohexane $(1 / 20)$ as the eluent giving the product as yellow oil ($2.00 \mathrm{~g}, 52 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53$ (dd, ${ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.13\left(\mathrm{dd},{ }^{3} J=17.0 \mathrm{~Hz},{ }^{3} J\right.$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84\left(\mathrm{~d},{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.36\left(\mathrm{dd},{ }^{3} J=17.0 \mathrm{~Hz},{ }^{2} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.80\left(\mathrm{dd},{ }^{3} J=10.5 \mathrm{~Hz},{ }^{2} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.0,153.4,149.2,131.9,130.4,129.2,123.4,110.7,110.0,56.0$,
56.0. Spectroscopic data for the title compound was consistent with the literature. ${ }^{13}$

1-(3,4-Dimethoxyphenyl)-3-hydroxy-1-propanone (6) ${ }^{14}$: Vinyl ketone 7 (1.49 g, 7.76 mmol, 1.0 equiv) and $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(414 \mathrm{mg}, 1.55 \mathrm{mmol}, 20.0 \mathrm{~mol} \%)$ were stirred in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL} / 16 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 24 h . Upon completion of the reaction (as indicated by TLC), the reaction mixture was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The obtained crude residue was purified by silica gel column chromatography using EtOAc/cyclohexane (3/10) as the eluant to afford the product 6 as yellow solid ($303 \mathrm{mg}, 19 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.57$ (dd, $\left.{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88(\mathrm{~d}$, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.00\left(\mathrm{t},{ }^{3} J=5.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.18\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.80 (br s, 1H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,153.8,149.2,130.1$, $123.1,110.2,110.0,58.4,56.2,56.1,40.0$. Spectroscopic data for the title compound was consistent with the literature. ${ }^{14}$

The control experiments were then performed according to the General procedure D using these four compounds described above as substrates. All results were summarized in Fig. 7 in the main manuscript. As monitored by TLC, both, the reactions of benzylic alcohol and 3-phenyl-propan-1-ol did not lead to any products after the standard workup, which meant that the radical reaction does not occur in the presence of aliphatic hydroxy groups. The reaction of vinyl ketone 7 generated a product which appeared as gel-like polymer after flash column chromatography purification using $\mathrm{MeOH} / \mathrm{DCM}$ as eluent. However, the low solubility of the product in common solvents caused difficulties in characterization.

These results revealed that the cleavage of the hydroxyl group could not be initiated in the presence of boryl radical and thus excludes the mechanistic routes B and C in Fig. 6 in main manuscript. Both compounds 6 and 7 could undergo a
transformation in the radical process, especially compound $\mathbf{6}$ could produce the dimer 5f. That shows the feasibility of route A. As discussed in main manuscript, the radical addition of alcohol $\mathbf{6}$ would generate an α-ketyl radical intermediate with a hydroxyl group at γ-position, which enables the bidentate complexation with pinacolborane (Fig. S5). The six-member ring could stabilize the carbon radical intermediate and also inhibit dimerization in α-position. The high strain within the spirocycle (sixmember ring spiroconnected with the five-member ring of pinalcol borane) would then initiate the intramolecular single electron transfer followed by a dimerization.

Figure S5. Spiro intermediate via radical addition of β-hydroxyketone 6. Benzylic position is beneficial for the stabilization of the radical.

Lignin extraction

Organosolv-lignin was chosen in a first proof-of-concept study with lignin to avoid any solubility problems. The organosolv-lignin was extracted with 1,4-dioxane from wood sawdust according to literatures' procedure., ${ }^{4,14,15}$ The sawdust of pine wood was obtained from carpenter workshop in our institute, and was then subjected to the literature's lignin extraction process.
10.1 g of wood sawdust was subjected to a Soxhlet extractor with 100 mL of ethanol and 200 mL of toluene overnight. Afterward, the sawdust was dried under reduced pressure and was refluxed by 200 mL of 1,4-dioxane with 8 mL of hydrochloric acid (1.0 m). After 4 h of extraction, the sawdust was filtered, and the filtrate was concentrated to about 60 mL which was then added dropwise into 300 mL of intensively stirred warm deionized water (about $35^{\circ} \mathrm{C}$). The remaining solution of lignin was then left in refrigerator overnight. Afterward, a simple filtration gave 105 mg of brown powder which was then further purified by two precipitations in water and two in diethylether. The obtained light brown powder (74.6 mg) was then analyzed by HSQC spectroscopy and GPC. The signals corresponding to the major structural linkages (A: β-O-4, B: $\beta-\beta$ and $\mathrm{C}: \beta-5$) were identified (Figure S6, top), and the abundance was calculated as below based on the integral area corresponding to the α-proton in linkages relative to the aromatic signals while maintaining the same contour level. (Figure S6, bottom). The results of calculation were summarized in Table S1.

$$
\begin{array}{ll}
\boldsymbol{I}(\mathrm{C} 9)=0.5 \boldsymbol{I}\left(\mathrm{~S}_{2,6}\right)+\boldsymbol{I}\left(\mathrm{G}_{2}\right) & \begin{array}{l}
\text { where } \boldsymbol{I} \text { is the integral area of characteristic peak; } \\
\mathbf{S}_{\mathbf{2}, 6} \text { is the peak from the two othor-protons of }
\end{array} \\
\boldsymbol{I}(\text { unit })=\boldsymbol{I}\left(\text { unit }_{\alpha}\right) / \mathbf{n}(\mathrm{H}) & \begin{array}{l}
\text { syringyl moiety, while } \mathbf{G}_{2} \text { for the othor-proton of } \\
\text { guaiacol moiety and unit } \\
\\
\boldsymbol{P}(\text { unit })=[\boldsymbol{I}(\text { unit }) / \boldsymbol{I}(\mathrm{C} 9)] \times 100 \%
\end{array} \\
\mathbf{n} \text {-proton of unit; } \\
\mathbf{n}(\mathbf{H}) \text { is the number of } \alpha \text {-proton in each unit; } \mathbf{P}(\text { unit }) \\
\text { is the percentage of unit. }
\end{array}
$$

$$
\begin{aligned}
& \boldsymbol{I}(\mathrm{C} 9)=0.5 \boldsymbol{I}\left(\mathrm{~S}_{2,6}\right)+\boldsymbol{I}\left(\mathrm{G}_{2}\right)=0.5 \times 70.1+100.0=135.1 \\
& \boldsymbol{P}(\beta-\mathrm{O}-4)=\left[\boldsymbol{I}\left(\beta-\mathrm{O}-4_{\alpha}\right) / \boldsymbol{I}(\mathrm{C} 9)\right] \times 100 \%=[40.1 / 135.1] \times 100 \%=29.7 \%
\end{aligned}
$$

$$
\boldsymbol{P}(\beta-\beta)=[(8.4 / 2) / 135.1] \times 100 \%=3.1 \%
$$

$$
\boldsymbol{P}(\beta-5)=[(9.4 / 1) / 135.1] \times 100 \%=7.0 \%
$$

Table S2. Characterisation of lignin analysed with 2D-HSQC NMR.

Lignin sample	Aromatic units' percentage $\mathbf{S}, \mathbf{G}, \mathbf{H}(\%)$	Linkages (per 100 C9 units)		
		$\beta-\mathbf{O - 4}$	$\beta-\boldsymbol{\beta}$	$\boldsymbol{\beta}-\mathbf{5}$
Organosolv-lignin	26,74, trace	29.7	3.1	7.0

Furthermore, a larger scale extraction was performed starting with 50.0 g wood sawdust to obtain 2.52 g of crude organosolv-lignin which was used later for DDQoxidation and depolymerization.

Figure S6. Linkage structure assignment in partial 2D HSQC NMR spectrum (d_{6}-DMSO) of organosolv-lignin (top); abundance calculation based on the integral area of characteristic peaks (bottom).

Figure S7. Original HSQC NMR spectrum of organosolv-lignin in d_{6}-DMSO

Lignin oxidation

With the organosolv-lignin in hand, oxidation with DDQ was performed according to the well-developed procedure. ${ }^{16}$ To a stirred solution of organosolv-lignin $(1.2 \mathrm{~g}, 1.0$ wt. eq.) in 1,4-dioxane (30 mL) was added DDQ (1.6 g). The solution was heated to $80^{\circ} \mathrm{C}$ for 2 h , cooled, filtered through a pad of celite and washed with 1,4-dioxane $(4 \mathrm{~mL})$. The filtrate was added dropwise to $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and the resulting precipitate was filtered and washed with excess $\mathrm{Et}_{2} \mathrm{O}$. The obtained lignin ${ }^{\alpha-\mathrm{ox}}$ (brown powder, 0.76 g) was dried to a constant weight in vacuum overnight prior to analysis and the radical depolymerization.

The oxidized organosolv-lignin was characterized by HSQC-NMR spectroscopy. The signals corresponding to the major structural linkages ($\mathrm{A}^{\mathrm{ox}}: \beta-\mathrm{O}-4^{\alpha-\mathrm{ox}}$) were identified by comparing with the literatures' value ${ }^{4,16}$ (Figure S 8 , top), and the abundance was calculated as below based on the integral area corresponding to the β proton in β-O- $4^{\alpha-0 x}$ relative to the aromatic signals while maintaining the same contour level. (Figure S8, bottom). The results of calculation were summarized in Table S2.

$$
\begin{aligned}
& \boldsymbol{I}(\mathrm{C} 9)=0.5 \boldsymbol{I}\left(\mathrm{~S}_{2,6}\right)+\boldsymbol{I}\left(\mathrm{G}_{2}\right)=0.5 \times(130.1+4.2)+100.0=167.2 \\
& \boldsymbol{P}\left(\beta-\mathrm{O}-4^{\alpha-\mathrm{ox}}\right)=\left[\boldsymbol{I}\left(\beta-\mathrm{O}-4^{\alpha-\mathrm{ox}}{ }_{\beta}\right) / \boldsymbol{I}(\mathrm{C} 9)\right] \times 100 \%=[(13.5+23.7) / 167.2] \times 100 \%=22.2 \%
\end{aligned}
$$

Table S3. Characterisation of oxidized-lignin analysed with 2D-HSQC NMR.

Lignin sample	Aromatic units' percentage $\mathbf{S}, \mathbf{G}, \mathbf{H}(\%)$	Linkage (per 100 C9 units) $\boldsymbol{\beta}-\mathbf{O}-\mathbf{4}^{\alpha-0 x}$
Oxidized-lignin	40,60, trace	22.2

Figure S8. Linkage structure assignment in partial 2D HSQC NMR spectrum (d_{6}-DMSO) of DDQoxidized organosolv-lignin (top); abundance calculation based on the integral area of characteristic peaks
(bottom).

Figure S9. Original HSQC-NMR spectra of DDQ oxidized organosolv-lignin in d_{6}-DMSO.

Quantitative ${ }^{31} \mathbf{P}$ NMR analysis of lignin and oxidized lignin

The quantitative ${ }^{31} \mathrm{P}$ NMR analysis for the phenolic and the aliphatic hydroxyl groups in the organosolv-lignin, oxidized lignin was conducted on a Brukner 600 MHz spectrometer following previous literature report. ${ }^{17}$ In a glovebox, 2.0 mL of CDCl_{3} and 3.2 mL of pyridine were combined as the solvent-mix for the ${ }^{31} \mathrm{P}$ quantify analysis. 6.1 mg of $\mathrm{Cr}(\mathrm{acac})_{3}$ was dissolved by 1.0 mL of mix-solvent in a vial followed by the addition of NHND (18.5 mg) as the SI solution $(1.27 \mathrm{~g}) .30 .2 \mathrm{mg}$ of pre-dried lignin was mixed with $10.0 \mu \mathrm{~L}(11.2 \mathrm{mg})$ of SI solution in a vial, and 0.5 mL of mix-solvent was added to dissolve the sample. The sample solution was taken out from the glovebox and 0.1 mL of 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane was added and transferred to an NMR tube for NMR acquisition using 512 scans, 250 ppm sweep width and a relaxation delay of 10 sec . For the oxidized lignin, 10.7 mg of pre-dried oxidized lignin sample was used, and 11.6 mg of SI solution was added.

Table S4. Typical integration regions for organosolv-lignin and oxidized lignin in ${ }^{31} \mathrm{P}$ NMR spectrum.

Lignin functional group	Chemical shift (p.p.m.)	Ratio of the integration of the region of interest over the standard region	
		Lignin $(30.2 \mathrm{mg})$	Ox-lignin $(10.7 \mathrm{mg})$
Aliphatic OH	$\sim 145.4-150.0$	127.1	10.64
Phenolic OH	$\sim 137.6-144.0$	41.83	12.07
Guaiacyl OH (G)	$\sim 139.0-140.2$	27.04	1.80
Syringyl OH (S)	~ 142.7	7.52	1.06

$\mathbf{C O O H}$	$\sim 133.6-136.0$	7.20	5.40

Table S5. Quantitative ${ }^{31} \mathrm{P}$ NMR calculating of the hydroxyl groups content in lignin and oxidized lignin.

Sample	OH (mmol/g)					
	Aliphatic OH	Phenolic OH	Guaiacyl OH (G)	Syringyl OH (S)	COOH	
Lignin	3.72	1.23	0.79	0.22	0.21	
Ox-lignin	0.91	1.03	0.15	0.09	0.46	

Lignin degradation

The α-oxidized organosolv-lignin was then subjected to the radical depolymerization procedure: α-oxidized organosolv-lignin ($49.7 \mathrm{mg}, 1.00 \mathrm{wt}$. eq.), B_{2} (pin) $)_{2}(163 \mathrm{mg}$, 3.28 wt . eq.), 4-(4-pyridinyl)benzonitrile ($7.9 \mathrm{mg}, 0.160 \mathrm{wt}$. eq.) were placed into a Schlenk tube charged with a magnetic stir bar under N_{2}. Then, 1.2 mL of dry DMF was added to dissolve the components. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$. After 24 h , the reaction mixture was cooled and quenched with aq. $2 \mathrm{~m} \mathrm{Na} \mathrm{Na}_{3}(2.0$ mL). The resulted mixture was stirred under air for another 1 h , and was then neutralized by aq. $\mathrm{HCl}(1 \mathrm{~m})$, extracted with $\operatorname{EtOAc}(15 \mathrm{~mL} \times 3)$. The obtained organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, a brown oil residue was obtained, which was then analyzed by 2D-HSQC NMR spectroscopy, GPC and LC-MS/MS quantification.

The obtained HSQC-NMR spectrum of the degradation mixture (orange-cyan colour) was compared with that of oxidized lignin (grayscale colour). The oxidized β -O-4 linkage disappeared after the treatment with boryl radical conditions (Figure S10).

Figure S10. HSQC-NMR spectral overlap of oxidized lignin (grayscale color) with degradation mixture (orange-cyan color) in $\boldsymbol{d}_{\mathbf{6}}$-DMSO. The left part shows the area of $\{(8.0-6.0),(140.0-90.0)\}$ while the right part shows the area of $\{(6.0-1.5),(90.0-20.0)\}$.

Figure S11. Original HSQC-NMR spectra of degradation mixture in d_{6}-DMSO.

GPC analysis

The molecular weight distribution profiles of the lignin and the depolymerized product mixture were obtained by GPC performed on an HPLC 2000 system (Jasco, Groß-Umstadt) with a LaChrom Autosampler (Merck-Hitachi, Darmstadt), applying a size-exclusion column ($1.000 \AA, 5 \mu \mathrm{~m}$, MCX, PSS, Mainz) fitted with a UV-detector $(254 \mathrm{~nm})$. The samples were eluted with 0.1 M NaOH solution with $0.1 \mathrm{wt} . \%$ of NaN_{3} at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. Molecular weight calibration was performed with polystyrene sulfonate standards and 4,4'-Biphenylcarboxylic-acid standards. 7 mg of the samples were diluted in 5 mL of $\mathrm{DMSO} /$ pyridine combining solvent $(\mathrm{v} / \mathrm{v}, 5: 1)$ and were used for the GPC measurement.

Figure S12. GPC chromatogram of organosolv-lignin.

Figure S13. GPC chromatogram of oxidized lignin.

Figure S14. GPC chromatogram of degradation mixture.

Figure S15. GPC chromatograms comparison.

Quantitative LC-MS/MS analysis

Separation was performed using a Dionex Ultimate RS 3000 UHPLC (Thermo Scientific, Idstein, Germany) which was equipped with an Accucore aq. column (2.1 x $100 \mathrm{~mm}, 2.6 \mu \mathrm{~m}$, Thermo Scientific). For gradient elution, 1 mM ammonium acetate $+0.5 \%$ formic acid (A) and methanol/acetonitrile (1:1, v/v) (B) were utilized. Separation started with 12% B and this ratio was increased to 99% within 5.5 min . The ratio was kept for 1 min and afterwards set back to 12% within 0.5 min . The column was equilibrated for 1.5 min , resulting in a run time of 8.5 min . Column temperature and injection volume were set to $17{ }^{\circ} \mathrm{C}$ and $1 \mu \mathrm{~L}$, respectively. The system was connected to a QTrap 3200 tandem mass spectrometer (ABSciex, Darmstadt, Germany). Before entering the interface, the flow was split 1:10. Ionization was performed via ESI positive mode (capillary voltage 5000 V , interface temperature $150^{\circ} \mathrm{C}$). For compound detection, the multiple reaction monitoring mode (MRM) was utilized with two transition states per compound. Details are provided in Table S6. Nitrogen was utilized as collision gas. Compounds were considered as unequivocally identified when both transitions states were detectable.

Samples prepared as described in the previous section were dissolved in methanol, acetonitrile with addition of 1% formic acid or in dimethylformamide. For analysis, samples were diluted with methanol/water ($1: 1, \mathrm{v} / \mathrm{v}$).

Figure S16. Standard samples prepared for the quantification with LC-MS/MS.

Table S6. Precursor ions and detected fragments of lignin breakdown products.

Compound	Precursor ion	Product ion*	collision energy
	m / z	m / z	$[\mathrm{~V}]$
$\mathbf{3 c}$	181.1	139.1	14
$\mathbf{4 c}$		124.1	24
	155.1	123.1	14
$\mathbf{5 c}$		95.1	20
$\mathbf{6 c}$	211.1	165.1	20
		203.3	32
$\mathbf{3 f}$	197.1	165.1	26
		139.1	15
$\mathbf{5 f}$	419.1	155.1	15
		140.1	26
		181.2	21
		219.2	33

* - the more intense fragment ion is mentioned first.

Figure S17. LC-MS/MS chromatogram of A) standard solution ($1 \mathrm{mg} \mathrm{L}^{-1}$) and B) depolymerization samples. In case of the standard solution, the ion trace of the more intense fragment is shown (see Table S6), for the degradation sample the total ion count is presented.

In the quantitative analysis, only the syringone $\mathbf{3 f}$ and syringyl dimer $\mathbf{5 f}$ were detected and were quantified with LC-MS/MS for each of the three reactions. The
results were summarized in Table S5. Guaiacol 4b and syringol $\mathbf{4 c}$ were not detected via LC-MS/MS or via GC/MS. One reason could be the influences of pinacol borylated complexes residues interacting with $\mathbf{4 b}$ and $\mathbf{4 c}$.

Table S7. Quantification of the $3 f$ and 5 f in the degradation mixture.

Sample	Amount of oxidized lignin (mg)				
		Absolute amount of 3f($\mu \mathrm{g}$)	Wt \% of 3f	Absolute amount of $\mathbf{5 f}$ ($\mu \mathrm{g}$)	Wt \% of 5f
HOL615-1	46.8	93.0	0.2 wt.\%	13.0	0.03 wt.\%
HOL615-2	48.3	103.0	0.2 wt.\%	15.0	0.03 wt .\%
HOL615-3	49.7	187.0	0.4 wt.\%	16.0	0.03 wt . \%

References

1. J. Tian, C. Yao, W. L. Yang, L. Zhang, D. W. Zhang, H. Wang, F. Zhang, Y. Liu and Z. T. Li, Chinese Chem. Lett., 2017, 28, 798.
2. M. Dawange, M. V. Galkin and J. S. M. Samec, ChemCatChem, 2015, 7, 401.
3. M. Lahtinen, A. Haikarainen and J. Sipilä, Holzforschung, 2013, 67, 129.
4. C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood, Angew. Chem., Int. Ed., 2015, 54, 258.
5. J. D. Nguyen, B. S. Matsuura and C. R. Stephenson, J. Am. Chem. Soc., 2014, 136, 1218.
6. J. Cao, G. Wang, L. Gao, X. Cheng and S. Li, Chem. Sci., 2018, 9, 3664.
7. Z. Omran and A. Specht, Tetrahedron Lett., 2009, 50, 2434.
8. B. B. Li, J. L. Li, N. Li, H. S. Lee, X. B. Wang and L. Cui, Phytochem. Lett., 2017, 20, 123.
9. G. Wang, J. Cao, L. Gao, W. Chen, W. Huang, X. Cheng and S. Li, J. Am. Chem. Soc., 2017, 139, 3904.
10. G. Wang, H. Zhang, J. Zhao, W. Li, J. Cao, C. Zhu and S. Li, Angew. Chem., Int. Ed., 2016, 55, 5985.
11. A. Bugarin, K. D. Jones and B. T. Connell, Chem. Commun., 2010, 46, 1715.
12. J. J. Yun, X. Y. Liu, W. Deng, X. Q. Chu, Z. L. Shen and T. P. Loh, J. Org. Chem., 2018, 83, 10898.
13. S. Dabral, J. Engel, J. Mottweiler, S. S. M. Sppehrle, C. W. Lahive and C. Bolm, Green Chem., 2018, 20, 170.
14. I. Bosque, G. Magallanes, M. Rigoulet, M. D. Karkas and C. R. J. Stephenson, ACS Cent. Sci., 2017, 3, 621.
15. S. Bauer, H. Sorek, V. D. Mitchell, A. B. Ibanez and D. E. Wemmer, J. Agric. Food. Chem., 2012, 60, 8203.
16. H. Guo, Daniel M. Miles-Barrett, A. R. Neal, T. Zhang, C. Li and N. J. Westwood, Chem. Sci., 2018, 9, 702.
17. X. Meng, C. Crestini, H. Ben, N. Hao, Y. Pu, A. J. Ragauskas and D. S. Argyropoulos, Nat. Protoc., 2019, 14, 2627.
