Supporting Information

Noble-metal free TiO₂ photocatalysis for selective C=C reduction of α,β-enones by CF₃SO₃H modification

Jundan Li¹⁺, Anan Liu²⁺, Yi Wang¹⁺, Shan Zhai¹, Dongge Ma^{1*} and Chuncheng Chen³

[1]School of Science, Beijing Technology and Business University, Beijing, P. R. China, 100048

[2]Basic Experimental Center for Natural Science, University of Science and Technology, Beijing, P. R. China, 100083

[3]Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China, 100190

† These authors contributed equally.

Correspondence to: madongge@btbu.edu.cn

Table of Contents

- I. General Information
- II. General procedure A for the preparation of α , β -enones
- III. General procedure B for the preparation of α , β -enones
- IV. Optimization of reaction conditions
- V. General procedures for TiO_2 photocatalyzed reduction of C=C bond of α , β -

enones with adding CF₃SO₃H

- VI. Photocatalyst recycle performances for 5 cycles
- VII. TiO₂ photocatalyzed reduction of C=C bond of α , β -enones with adding CF₃SO₃H on gram scale
- VIII. ATR-FTIR technique procedures
- IX. GC-MS spectra of the C-C saturated products of TiO_2 photocatalyzed reduction of C=C bond of α,β -enones with adding CF₃SO₃H
- X. Figure S1 ¹³C-NMR spectrum of 4-phenyl-3-buten-2-one adsorbed on P25 TiO₂ in CD₃CN in the presence of Et₃N and 4-methoxybenzoic acid
- XI. AQE measurement of photocatalytic reaction

I. General Information

All reactions were performed under Ar atmosphere unless specifically indicated and with oven-dried glassware under magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Photochemical reactions were carried out using a 100 W 400 nm LED purchased from Au Light (Beijing) in standard Pyrex-glass bottles with sealable rubber-cap. We have high-power fan placed next to the setup to cool the bottle. And we measured the temperature of the reaction mixture to be 38 °C. This temperature is mild enough not to lead other non-photocatalytic reactions. We measured All photoreactions were stirred using a PTFE coated magnetic stir bar on a magnetic stir plate. Gas chromatography (GC) was performed on an Agilent 7890A instrument equipped with a split-mode capillary injection system and Agilent 5973 network mass spec detector (MSD). Yield refers to GC yield by referring to analytically pure material unless otherwise noted. Thin layer chromatography (TLC) was performed on SiliaPlate 250 µm thick silica gel plates provided by Qingdao chemicals. Column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). Visualization was accomplished with short wave UV light (254 nm). ¹H and ¹³C NMR spectra were recorded in CDCl₃ or (CD₃)₂CO solvent using 300 MHz, 400 MHz or 600 MHz Bruker Avance NMR instrument (referenced internally to Me₄Si). Chemical shifts (δ , ppm) are relative to tetramethylsilane (TMS) with the resonance of the non-deuterated solvent or TMS as the internal standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Accurate mass measurements were performed using a Thermo Fisher DFS mass spectrometer with EI ionization in FD-MS detection mode.

II. General procedure A for the preparation of α , β -enones via Claisen-Schmidt reaction

 α ,β-Enones were prepared using the reported procedure. Benzaldehyde (10 mmol) was added into a mixture solution of 4 ml acetone and 8 ml H₂O. Then 1.6 ml 5% NaOH aqueous solution was slowly added into the above mixture solution dropwise. Then the reaction mixture was stirred at room temperature for approximate 1-2 h with the monitoring of the disappearance of benzaldehyde and the formation of new spots in TLC plate. After the total consumption of benzaldehyde, the mixture was filtered off and water (5 mL) was added. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (10 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified through column chromatography (petroleum ether/EtOAc =100/1 to 30/1) to afford the corresponding α,β-enones. The product was analyzed by HR-EI-MS, ¹H NMR, and ¹³C NMR.

III. General procedure B for the preparation of α , β -enones via modified Wittig reaction

 α,β -Enones were prepared using the reported procedure. Phenacyltriphenylphosphonium bromide (10 mmol) and NaOH (1mmol) was added into a mixture solution of 10 ml toluene and 5 ml H₂O. Then 2 ml acetaldehyde was slowly dropwise added into the above solution. Then the reaction mixture was stirred at room temperature for approximate 6 h with the monitoring of the disappear of Wittig reagent and the formation of new spots in TLC plate. After the total consumption of phenacyltriphenylphosphonium bromide, the mixture was filtered off and water (5 mL) was added. The organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (10 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified through column chromatography (petroleum ether/EtOAc =200/1 to 30/1) to afford the corresponding α , β -enones. The product was analyzed by HR-EI-MS, ¹H NMR, and ¹³C NMR.

IV. Optimization of reaction conditions

Table S1. TiO₂ Photocatalytic Reduction of C=C Bond of α , β -Enones using different light source^a

Entry	Light source	Yield ^b (%)	
1	300 W xenon lamp with	98	
	365 nm filter		
2	300 W xenon lamp with	18	
	420 cut-off filter		
3	100 W 400 nm LED	98	
4	100 W 455 nm LED	trace	

^aReaction conditions: (E)-4-phenylbut-3-en-2-one (0.1 mmol), photocatalyst P25 TiO₂ (20 mg), acetonitrile (0.9 ml) as solvent, triethylamine (0.1 ml) as hydrogen donor and hole sacrificial reagent under Ar atmosphere, CF_3SO_3H (0.006 mmol) with different illuminating source for 2 h at 5 cm distance. ^bMeasured by GC by referring the integral area of the crude reaction mixture with commercially available standard compound by the FID detector.

Table S2. TiO₂ Photocatalytic Reduction of C=C Bond of α , β -Enones using different solvent^a

	O Ar 400 nm TiO ₂ , Et ₃ N/sc	$\xrightarrow{\text{LED}}$	
Entry	Solvent	Yield ^b (%)	Conversion(%)
1	CH ₃ CN	98	100
2	DMF	29	100
3	DMSO	0	20
4	n-hexane	12	18
5	toluene	28	55
6	H ₂ O	trace	28

^aReaction conditions: (E)-4-phenylbut-3-en-2-one (0.1 mmol), photocatalyst P25 TiO₂ (20 mg), solvent (0.9 ml), triethylamine (0.1 ml) as hydrogen donor and hole sacrificial reagent under argon atmosphere, CF_3SO_3H 0.006 mmol with 400 nm LED illuminating for 2 h at 5 cm distance. Yields are measured by GC by referring the integral area of the crude reaction mixture with commercially available standard compound by the FID detector.

Table S3. TiO₂ Photocatalytic Reduction of C=C Bond of α , β -Enones with different hydrogen donor and hydrogen donor:solvent ratio.

	0 TiO ₂ ,	SO ₃ H	0	
Entry	Hydrogen donor	solvent	Yield(%)	Conversion(%)
1	Methanol	Methanol	22	100
2	Ethanol	Ethanol	51	100
3	Isopropanol	Isopropanol	8	23
4	triethylamine	CH ₃ CN	98	100
5	DIPEA	CH ₃ CN	19	33

6	Hantzsch's ester	CH ₃ CN	47	100
7 ^b	triethylamine	CH ₃ CN	77	100
8°	triethylamine	CH ₃ CN	79	100
9 ^d	triethylamine	CH ₃ CN	71	100
10 ^e	triethylamine	CH ₃ CN	71	98

^aReaction conditions: (E)-4-phenylbut-3-en-2-one (0.1 mmol), photocatalyst P25 TiO₂ (20 mg), solvent (0.9 ml), hydrogen donor (0.1 ml) under Ar atmosphere, CF₃SO₃H 0.006 mmol with 400 nm LED illuminating for 2 h at 5 cm distance for entry1-5, while solvent (0.9 ml), hydrogen donor 100 mg for entry 6. Yields are measured by GC by referring the integral area of the crude reaction mixture with commercially available standard compounds by the FID detector. ^b CH₃CN: triethylamine= 0.95 ml:0.05 ml ^c CH₃CN: triethylamine= 0.8 ml:0.2 ml ^d CH₃CN: triethylamine= 0.7 ml:0.3ml ^e CH₃CN: triethylamine= 0.5 ml:0.5ml.

Entry	Co-catalyst	Yield(%)	Conversion(%)
1	K ₂ CO ₃	44	78
2	КОН	50	77
3	Cs_2CO_3	18	100
4	Benzoic acid	9	20
5	4-methoxy benzoic acid	16	100
6	Acetic acid	14	33
7	Formic acid	71	100
8	CF ₃ COOH	79	100
9	MeSO ₃ H	71	100
10	4-toluenesulfonic acid	36	65
11	CF ₃ SO ₃ H	98	100

Table S4. TiO₂ Photocatalytic Reduction of C=C Bond of α,β -Enones with different basic and acidic co-catalyst.

^aReaction conditions: (E)-4-phenylbut-3-en-2-one (0.1 mmol), photocatalyst P25 TiO₂

(20 mg), CH₃CN (0.9 ml), Et₃N (0.1 ml) under argon atmosphere, co-catalyst (0.006 mmol) with 400 nm LED illuminating for 2 h at 5 cm distance. Yields are measured by GC by referring the integral area of the crude reaction mixture with commercially available standard compounds by the FID detector.

Table S5. Blank Control Experiments for TiO_2 Photocatalytic Reduction of C=C Bond of α,β -Enones

Entry	Deviation from the standard condition	Yield (%)	Conversion (%)
1	Without TiO ₂	0	33
2	SiO ₂ instead of TiO ₂	0	44
3	Without illumination in dark	0	0
4	Without triethylamine	1	36
5	Heating to 80 °C in dark	0	0

V. General procedures for TiO₂ photocatalyzed reduction of C=C bond of α , β enones with adding CF₃SO₃H

A 10 mL glass vial filled with 0.9 mL extra-dry acetonitrile, 0.1 ml triethylamine and 0.1 mmol as-prepared α , β -enones, and 20 mg P25-TiO₂ photocatalyst was capped with sealable rubber-cap and magnetically stirred in front of a 400 nm LED. A high power axial fan was placed beside the glass vial to keep the reaction under room temperature. Once the starting material was completely consumed (monitored by TLC, petroleum ether/EtOAc= 30/1), the mixture was concentrated in vacuo to dryness. The residue was purified through column chromatography (petroleum ether/EtOAc = 200/1 to 50/1) to afford the corresponding C-C bond saturated product. The product was analyzed by GC-MS.

VI. Photocatalyst recycle perfomance for 5 cycles

For the photocatalyst stability test: after one standard reaction, the photocatalyst was separated by centrifugation, and washed by acetonitrile twice, and then transferred into the photo-reaction vessel, the following steps are the same to the procedure in the above mentioned standard photo-reaction protocols. The cycle stability test was repeated for consecutive five times.

Table S6. Photocatalyst recycle perfomance for 5 cycles of TiO_2 Photocatalytic Reduction of C=C Bond of α , β -Enones

Entry	1 st run	2 nd run	3 rd run	4 th run	5 th run
Yield (%)	98	98	97	97	95
Conversion (%)	100	100	100	100	100

VII. TiO₂ photocatalyzed reduction of C=C bond of α , β -enones with adding CF₃SO₃H on gram scale

A 50 mL two-necked glass bottle was filled with 18 mL extra-dry acetonitrile and 2 ml triethylamine and 10 mmol as-prepared α , β -enones, and 100 mg P25-TiO₂ photocatalyst, 0.6 mmol CF₃SO₃H was added extremely slowly to the solution with ice-bath. After the completion of adding the reagent, the suspension was purged with Ar for 20 minutes and then magnetically stirred in front of a 400 nm LED illumination. A high power axial fan was placed beside the glass vial to keep the reaction under room temperature. Once the starting material was completely consumed (monitored by TLC, petroleum ether/EtOAc= 30/1), the mixture was filtered off and water (20 mL) was added. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (10 mL) for 3 times. The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified through column chromatography (petroleum ether/EtOAc =100/1 to 30/1) to afford the corresponding 1.4 g α , β -enones with an 95% isolated yield. The product was analyzed by HR-EI-MS, ¹H NMR, and ¹³C NMR.

VIII. ATR-FTIR technique procedures and spectra of blank and control experiments

The ATR-FTIR spectroscopy experimental setup was similar to that described in Ref.22. The instrumental setup consisted of a self-modified ARK flow cell (Thermo Fisher) containing a ZnSe crystal on the bottom plate and a quartz window on the top plate. Twelve infrared bounces were allowed using a 45° internal reflection element $(80 \times 10 \times 4 \text{ mm}^3)$. The FTIR measurements were performed on a Nicolet 6700 FT-IR spectrometer with an MCT detector. IR spectra ranging from 4000 to 650 cm⁻¹ were recorded by averaging 64 scans with a resolution of 4 cm⁻¹. A layer of CH₃CN/Et₃N solvent (9:1) was dripped onto the surface of the ZnSe crystal that was coated with a TiO₂ film. The crystal was then scanned to obtain the background spectrum. The substrate-containing solution was then dripped onto the surface, and adsorption equilibrium on the TiO₂ film was achieved after a balancing period of 3 h. TiO₂ film preparation: P25 was added in CH₃CN at a concentration of 0.25 g/mL. This suspension was placed in a 40 kHz ultrasonic bath for 20 min and then placed in an agate mortar for 10 min. The suspension (1.5 mL) was spread on the ZnSe crystal and dried for 1 h at 200 °C to remove CH₃CN.

IX. GC-MS spectra of the C-C saturated products of TiO_2 photocatalyzed reduction of C=C bond of α , β -enones with adding CF₃SO₃H

X. Surface Sensitive ¹³C-NMR experiments using 4-methoxybenzoic acid on the influence of ¹³C-NMR spectrum of 4-phenyl-3-buten-2-one adsorbed on P25 TiO₂ in CD₃CN in the presence of Et₃N and 4-methoxybenzoic acid

Figure S1. ¹³C-NMR spectrum of 4-phenyl-3-buten-2-one adsorbed on P25 TiO_2 in CD₃CN in the presence of Et₃N and 6 mM 4-methoxybenzoic acid. (top) C7 (C=O) (middle) and C6 (olefinic C=C) (bottom) spectra with the addition of different amount of 4-methoxybenzoic acid (from 0 to 55 mM) were zoomed in for a closer look.

XI. AQE measurement of photocatalytic reaction

We have measured the power density of the irradiation source to be 164.0 mW/cm^{-2} and the irradiation area was 0.74 cm^{-2} , the 400 nm LED light irradiation time was 7200 s and the reacted 4-phenyl-3-buten-2-one was 0.1 mmol. The apparent quantum efficiency was calculated from the calculated the quantum efficiency of the reaction. AQE (%) =number of reacted 4-phenyl-3-buten-2-one /number of incident photons \times 100= 1.13%