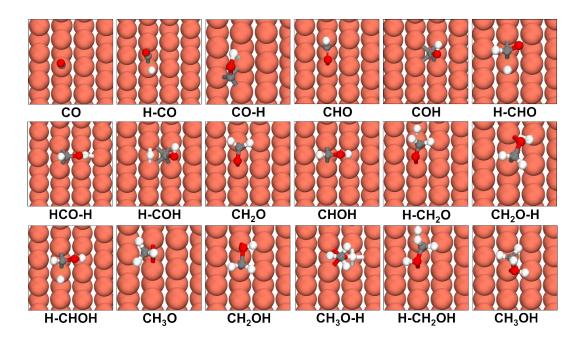
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information


Origin of CO₂ as the Main Carbon Source in Syngas-to-Methanol Process over Cu: Theoretical Evidence from a Combined DFT and Microkinetic Modeling Study

Dongyang Xu^{1,2,3}, Panpan Wu¹ and Bo Yang^{1,*}

¹School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China

²CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China ³University of Chinese Academy of Sciences, Beijing, 100049, China

*Email: yangbo1@shanghaitech.edu.cn

Figure S1. Configurations of the adsorption and transition states in the pathway of CO hydrogenation to methanol over clean Cu(211). In this figure and those hereafter, the Cu, C, H, and O atoms are colored orange, gray, white, and red, respectively.

Table S1. Activation energies (E_a) and reaction energies (ΔE) (both in eV) of the elementary reactions of methanol synthesis from CO₂ hydrogenation over the Cu(211) surface with no HCOO (0HCOO), one HCOO (1HCOO) and two HCOO (2HCOO) pre-covered. The values were obtained from our previous work (Wu and Yang, *ACS Catal.* 2017, 7, 10, 7187-7195).

Flomentowy respections	0H0	C OO	1H (C OO	2HC	C OO
Elementary reactions	Ea	ΔE	Ea	ΔE	Ea	ΔΕ
$CO_2(g)$ +H* \rightarrow HCOO*	0.20	-1.27	0.23	-0.99	0.29	-0.71
HCOO*+H*→HCOOH*+*	1.27	0.55	1.02	0.17	0.88	0.04
$HCOOH*+H*{\rightarrow}CH_2OOH*+*$	0.76	-0.11	0.79	0.03	0.82	0.05
$CH_2OOH^{*+*} \rightarrow CH_2O^{*+}OH^{*}$	0.42	0.35	0.49	0.34	0.30	0.31
$CH_2O*+H*\rightarrow CH_3O*+*$	0.11	-1.09	0.21	-0.91	0.61	-0.53
$CH_{3}O*+H*\rightarrow CH_{3}OH(g)+2*$	0.89	0.37	0.72	0.29	0.59	0.02
$H^{+}OH^{+}\rightarrow H_2O(g)+2^{+}$	1.01	0.32	0.87	0.20	0.83	-0.05

Table S2. Coverage (in ML) of surface HCOO at steady state obtained from microkinetic modeling at different ratios between gaseous CO and CO_2 at 573 K and 14.24 bar of gaseous reactant. The coverage of pre-covered HCOO on Cu(211) are also listed in the brackets for comparison.

CO/(CO+CO ₂)	Clean (0 ML)	1HCOO (0.083 ML)	2HCOO (0.167 ML)
0.8	0.595	0.088	0.167
0.6	0.746	0.092	0.167
0.4	0.815	0.097	0.167
0.2	0.855	0.102	0.167
0	0.880	0.107	0.167