Supporting information

Enhanced production of C_2 - C_4 alkanes from syngas via the metal sulfides-support interaction over Ni-MoS₂/Ce_{1-x}La_xO_{2- δ}

Jindong Shen ^a, Maoshuai Li ^{a,} *, Wei Li ^b, Ziwen Hao ^a, Shuangxi Lin ^a, Jing Lv ^a, Xiao Chang ^a, and Xinbin Ma ^{a,} *

^a Key Laboratory for Green Chemical Technology of Ministry of Education,
Collaborative Innovation Center of Chemical Science and Engineering, School of
Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

^b Ningbo Key Laboratory of Specialty Polymers, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China

*Corresponding author: Email: <u>xbma@tju.edu.cn; maoshuaili@tju.edu.cn</u>

Fig. S1: The variation of CO conversion and product selectivity with time on stream over $MoS_2/Ce_{0.9}La_{0.1}O_{0.05}$ -250 (A), $NiS_x/Ce_{0.9}La_{0.1}O_{0.05}$ -250 (B), and Ni-MoS₂/Ce_{0.9}La_{0.1}O_{0.05}-250 (C). Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h). And the light alkanes selectivities in the CO conversion reaction published in the previous studies¹⁻⁷.

Fig. S2: N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of the $Ce_{0.9}La_{0.1}O_{0.05}$ support, $MoS_2/Ce_{0.9}La_{0.1}O_{0.05}$ -250, $NiS_x/Ce_{0.9}La_{0.1}O_{0.05}$ -250, $Ni-MoS_2/Ce_{0.9}La_{0.1}O_{0.05}$ -250, and the Ni-MoS $_2/Ce_{0.9}La_{0.1}O_{0.05}$ -450.

Fig. S3: HAADF TEM image of Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-250 (A), and EDX mapping of Ce (B), La (C), and O (D).

Fig. S4: The DRIFT spectra of CO adsorption (I) and desorption (II) over $NiS_x/Ce_{0.9}La_{0.1}O_{1.95}-250$ (A), $MoS_2/Ce_{0.9}La_{0.1}O_{1.95}-250$ (B), $Ni-MoS_2/Ce_{0.9}La_{0.1}O_{1.95}-250$ (C), and $Ni-MoS_2/Ce_{0.9}La_{0.1}O_{1.95}-450$ (D).

Fig. S5: The effect of sulfidation temperature (A: 250 °C, B: 300 °C, C: 350 °C, D: 400 °C, E: 450 °C) on the time on-stream conversion of CO and product selectivity over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{0.05}. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

Fig. S6: The hydrocarbon selectivities (yellow bar: CH₄, red bar: C₂~C₄ light alkanes, blue bar: olefins, green bar: C₅⁺ hydrocarbons) and CO conversions as a function of reaction temperatures (340-420 °C) over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-250 (A) and Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-450 (B). Reaction condition: P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

Fig. S7: Raman spectra ranging from 380 to 420 cm⁻¹ (A) and 800 to 1000 cm⁻¹ (B) over the Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-250 (a), the Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-450 (b) catalysts, and the NiMo-oxide/Ce_{0.9}La_{0.1}O_{1.95} precursor (c).

Fig. S8: Histograms of the layer stacking (I) and length (II) over Ni- $MoS_2/Ce_{0.9}La_{0.1}O_{1.95}-250$ (A) and Ni- $MoS_2/Ce_{0.9}La_{0.1}O_{1.95}-450$ catalysts (B).

Catalysts ⁽¹⁾	X _{CO} (%)		Ну	CO_2	R _{CO}					
		CH_4	C_2^o	C ₃ °	C_4^{o}	C_2^{o} - C_4^{o}	Ole.	C_5^+	(%)	(h ⁻¹)
MoS ₂ /MgO	7.4	56.7	32.3	9.1	1.5	42.9	0.4	0	48.0	7.4
MoS ₂ /MgO-Al ₂ O ₃	14.4	64.1	29.0	5.7	0.6	35.3	0.4	0.3	48.2	14.5
MoS ₂ /Al ₂ O ₃	14.3	62.5	30.0	6.7	0.7	37.4	0.1	0	47.2	14.4
MoS ₂ /CeO ₂	10.3	59.4	34.9	3.8	0.3	39.0	1.6	0	48.5	10.3
MoS ₂ /Ce _{0.9} La _{0.1} O _{0.05}	17.3	57.1	37.5	4.2	0.4	42.0	0.8	0	48.4	17.4
MoS ₂ /La ₂ O ₃	8.5	64.1	29.4	3.1	0.5	33.0	2.5	0.5	48.2	8.6

Table S1: The support effect on the catalytic performance in the reaction over the supported MoS₂. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

(1) Sulfidation condition: 450 °C for 300 min.

Table S2: Catalytic performances over $Ce_{0.9}La_{0.1}O_{1.95}$ supported NiS_x, MoS₂ and Ni-MoS₂. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

C_{ata}	X _{CO}		Hydro	carbo	ectivity (%)	CO_2	R _{CO}		
	(%)	CH ₄	C_2^{o}	C_3^o	C_4^{o}	$C_2^{o}-C_4^{o}$	Ole.	C_5^+	(%)	(h ⁻¹)
NiS _x /Ce _{0.9} La _{0.1} O _{1.95} -250	3.7	21.3	39.4	16.3	4.0	60.0	13.8	5.2	49.8	-
$MoS_2/Ce_{0.9}La_{0.1}O_{1.95}$ -250	29.9	63.2	33.0	3.3	0.2	36.5	0.3	0	48.2	53.2
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -250	25.1	21.4	42.0	27.6	6.2	75.9	1.2	1.6	47.7	45.4

(1) Sulfidation condition: 450 °C for 300 min.

Table S3: H ₂ consumption	1 in the H ₂ -TPR analysis	ysis of the oxide	precursors
---	---------------------------------------	-------------------	------------

Samples	Support ⁽¹⁾	MoO ₃ /Support ⁽¹⁾	NiO/Support ⁽¹⁾	NiMo oxide/Support(1)
H_2 consumption (mol/g)	111.7	144.9	509.7	363.9

(1) Support: Ce_{0.9}La_{0.1}O_{1.95}

Table S4: The effect of support composition (Ce and La content) on the catalytic performance over the supported Ni-MoS₂. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

Catalanta(1)	X _{CO}	Hydrocarbon selectivity (%)								R _{CO}
	(%)	CH_4	C_2^o	C_3^o	C_4^{o}	$C_2^{o}-C_4^{o}$	Ole.	C_5^+	(%)	(h-1)
Ni-MoS ₂ /Ce _{0.95} La _{0.05} O _{1.975}	10.7	20.5	31.0	29.5	10.1	70.4	5.6	3.5	49.1	11.0
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95}	10.6	18.1	30.0	31.0	11.2	72.2	6.1	3.7	49.3	10.9
Ni-MoS ₂ /Ce _{0.8} La _{0.2} O _{1.9}	8.7	22.1	31.3	27.6	8.9	67.9	6.9	3.1	49.1	8.9

(1) Sulfidation condition: 450 °C for 300 min.

Table S5: An optimization of the loading of Mo and Ni for the reaction over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-450. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

$\mathbf{N}:\mathbf{O}(1)$	M-O (1)	X _{CO}		CO ₂	R _{CO}						
NIO ⁽¹⁾	(%) (%) (%)	(%)	CH ₄	C_2^{o}	C_3^{o}	C_4^{o}	C_2^{o} - C_4^{o}	Ole.	C_5^+	(%)	(h ⁻¹)
10 %	5 %	10.9	18.6	31.4	27.7	9.4	68.4	8.9	4.1	48.2	39.0
10 %	10 %	12.6	19.9	31.3	31.5	11.1	73.9	5.0	1.2	49.3	23.6
10 %	15 %	11.3	18.0	29.4	30.1	10.5	70.0	8.4	3.7	49.3	14.8
10 %	20 %	9.1	20.8	31.2	28.8	10.0	70.0	7.7	1.6	49.5	9.3
1.0 %	10 %	17.2	30.5	43.4	21.3	2.8	67.5	2.0	0	48.3	30.7
2.5 %	10 %	17.8	22.4	34.5	30.9	9.5	74.8	2.8	0	49.8	32.2
5.0 %	10 %	14.8	20.9	34.1	28.6	8.8	71.5	5.6	2.1	48.9	27.1
7.5 %	10 %	14.3	19.4	32.4	32.4	11.1	75.9	4.7	1.2	49.7	26.5

(1) Sulfidation condition: 450 °C for 300 min.

Table S6: The effect of sulfidation time on the catalytic performance for the reaction over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-450. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

Sulfidation time	X _{CO}		Hydrocarbon selectivity (%)							
	(%)	CH ₄	C_2^{o}	$C_{3^{o}}$	C_4^{o}	C_2^{o} - C_4^{o}	Ole.	C_5^+	(%)	(h ⁻¹)
200 min	17.0	21.4	34.7	28.4	8.9	72.0	4.3	2.8	48.3	30.6
300 min	17.9	22.1	34.5	32.1	8.6	75.1	2.8	0	49.5	32.5
400 min	17.8	22.4	34.5	30.9	9.5	74.8	2.8	0	49.7	32.2

(1) Sulfidation temperature: 450 °C.

Table S7: The effect of sulfidation temperature on the catalytic performance for the reaction over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}. Reaction condition: T = 380 °C, P = 3.5 MPa, CO/H₂ = 2 and WHSV = 5000 mL/(g·h).

Catalante(1)	X _{CO}		CO_2	R _{CO}						
	(%)	CH ₄	C_2^o	C_3^o	C_4^{o}	C2°-C4°	Ole.	C_5^+	(%)	(h-1)
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -250	25.1	21.4	42.0	27.6	6.2	75.9	1.2	1.6	47.7	45.4
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -300	24.8	22.6	41.3	27.6	6.7	75.7	0.7	1.0	47.9	45.0
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -350	24.0	23.0	39.4	28.6	7.1	75.1	0.5	1.3	48.4	43.3
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -400	19.6	22.1	35.8	29.6	9.4	74.8	1.0	2.2	48.5	35.7
Ni-MoS ₂ /Ce _{0.9} La _{0.1} O _{1.95} -450	17.9	22.1	34.5	32.1	8.6	75.1	0.8	2.0	49.5	32.5

(1) Sulfidation time: 300 min.

Pressure	CO/II	X _{CO}		Hydr	ocarbo	CO_2	R _{CO}				
(MPa)	Pa) CO/H_2	(%)	CH ₄	C_2^o	C_3^o	C_4^{o}	$C_2^{o}-C_4^{o}$	Ole.	C_5^+	(%)	(h ⁻¹)
3.5	0.5	28.9	33.3	41.2	19.9	3.9	65.0	0.92	0.7	47.3	52.4
3.5	1	32.6	33.7	41.9	20.1	3.4	65.3	0.9	0.1	47.4	59.1
3.5	2	25.1	21.4	42.0	27.6	6.2	75.9	1.2	1.6	47.7	45.4
2.5	2	21.5	23.7	44.2	27.6	3.1	74.8	1.5	0	49.0	38.9
3.5	2	25.1	21.4	42.0	27.6	6.2	75.9	1.2	1.6	47.7	45.4
4.5	2	24.8	21.5	41.6	28.8	5.8	76.2	1.0	1.35	48.9	44.8

Table S8: The effect of CO/H₂ and pressure on the catalytic performance for the reaction over Ni-MoS₂/Ce_{0.9}La_{0.1}O_{1.95}-250. Reaction condition: T = 380 °C and WHSV = 3125-5000 mL/(g·h).

Reference

- 1 T. Liu, T. Lu, M. Yang, L. Zhou, X. Yang, B. Gao, Y. Su, *Catal. Lett.*, 2019, **149**, 3338.
- 2 Q. Zhang, T. Ma, M. Zhao, T. Tomonobu, X. Li, Catal. Sci. Technol., 2016, 6, 1523.
- 3 C. Wang, X. Ma, Q. Ge, H. Xu, Catal. Sci. Technol., 2015, 5, 1847.
- 4 S.B. Jo, H.J. Chae, T.Y. Kim, C.H. Lee, J.U. Oh, S.-H. Kang, J.W. Kim, M. Jeong, S.C. Lee, J.C. Kim, *Catal. Commun.*, 2018, **117**, 74.
- 5 J.A. Delgado, C. Claver, S. Castillón, D. Curulla-Ferré, C. Godard, ACS Catal., 2015, 5, 4568.
- 6 R.M.M. Abbaslou, J. Soltan, A.K. Dalai, Appl. Catal. A: Gen., 2010, 379, 129.
- 7 Y. Yu, Y. Xu, D.-g. Cheng, Y. Chen, F. Chen, X. Lu, Y. Huang, S. Ni, *React. Kinet. Mech. Cat.*, 2014, **112**, 489.