Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information

Mono and bimetallic metal catalysts based on Ni and Ru supported on alumina coated

monoliths for CO₂ methanation

Ainhoa Bustinza¹, Marina Frías¹, Yuefeng Liu², Enrique García-Bordejé^{1*}

¹Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, E-50018 Zaragoza, Spain,

²Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

^{*} Corresponding author: Tel.:+ 34 976733977; fax.: +34 976733318 E-mail address: jegarcia@icb.csic.es

Scheme 1. Illustration of the preparation steps

Figure S1. Particle size distribution for monometallic catalyst Ni (a) and Ru (b) derived from statistical analysis of HAADF-STEM images

Study of the effect of the internal and external mass transfer

The Weisz-Prater criteria was applied to assess the absence of mas transfer limitations, according to the following equations:

$$Ca = \frac{r_{CO2} \cdot \rho_{cat}}{K_g \cdot am \cdot C_{CO2}} < \frac{0.05}{n}$$
(Equation 1)
$$WP = \frac{r_{CO2} \cdot \rho_{cat}}{D_{CO2,e} \cdot C_{CO2}} < \frac{n+1}{2} < 1$$
(Equation 2)

Where r_{CO2} is the reaction rate, ρ_{cat} is the apparent catalytic layer density, K_g is the mass transfer coefficient, a_m is the geometric surface area, C_{CO2} is the CO₂ concentration in the feed gas, δc is the characteristic dimension of the coating layer, $D_{CO2,e}$ is the effective diffusion coefficient and n is the reaction order.

The parameters used in equation 1 and 2 are listed in Table S1. Some of these parameters were withdrawn from reference [S1] and the geometrical values of the monolith were withdrawn from [S2]. The characteristic dimension of the coating layer was an averaged value withdrawn from SEM images of alumina coated monoliths reported in our previous work [S3].

The values attained are Ca=0,0033 and WP=1,6 10^{-12} for the experimental conditions of P=1, T=380 °C and a flow-rate of 60 ml/min. Assuming a reaction order n=0 in agreement with literature ⁷, both criteria are met, confirming the absence of mass transfer limitations.

Parameter	description	Units	Value
r _{CO2}	CO ₂ reaction rate	Kmol kg ⁻¹ s ⁻¹	8.51 10-5
ρ _{cat}	True density of γ-alumina	Kg m ⁻³	3650
Kg	mass transfer coefficient	m s ⁻¹	1.01512
a _m	geometric surface area	$m^2 m^{-3}$	2735.44
C _{CO2}	CO ₂ concentration in the feed gas	Kmol m ⁻³	3.98 10-6
δc	characteristic dimension of the coating	m	1.0 10-6

Table S1. Values of parameters used in equations 1 and 2.

	layer		
D _{CO2,e}	effective diffusion coefficient	m ² s ⁻¹	7.73 10-7
n	and n is the reaction order	-	0

References

S1. A. Vita A., C. Italiano, L. Pino L., P. Frontera , M. Ferraro, and V. Antonucci, *Appl. Catal. B: Environ.*, 2018, **226**, 384-395

S2. T. Vergunst, F. Kapteijn, J.A. and Moujin , Ind. Eng. Res. 2001, 40, 2801-2809

S3. E. García-Bordejé, I. Kvande, D. Chen and M. Rønning, *Adv. Mater.*, 2006, **18**, 1589-1592.