Bimetallic platinum-rhodium nanocomposites for dimethylamine borane dehydrogenation: An Experimental and Density Functional Theory Study

Oznur Alptekin^a[≅], Betul Sen^b[≅], Hilal Acidereli^b, Umran Ercetin^{*a}, Mehmet Ferdi Fellah^c,

Fatih Sen*b

^aDepartment of Mechanical Engineering, Faculty of Engineering, Dumlupinar University, Evliya Çelebi Campus,43100 Kütahya, Turkey

^bSen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Evliya Çelebi Campus,43100 Kütahya, Turkey

^cDepartment of Chemical Engineering, Bursa Technical University, Mimar Sinan Campus, 16310, Bursa, Turkey

[≅]*These authors contributed equally to this work.* **Corresponding author.*

(Corresponding authors: umran.ercetin@dpu.edu.tr, fatih.sen@dpu.edu.tr)

Synthesis of graphene oxide (GO)

Graphene oxide (GO) was synthesized from graphite powder using a modified Hummer's method. In brief, 1 g of graphite and 0.5 g of sodium nitrate were mixed followed by the addition of 23 mL of conc. sulphuric acid under constant stirring. After 1 h, 3 g of KMnO₄ was added gradually to the above solution while keeping the temperature less than 20 °C to prevent overheating and explosion. The mixture was stirred at 35 °C for 12 h and the resulting solution was diluted by adding 500 mL of water under vigorous stirring. To ensure the completion of the reaction with KMnO₄, the suspension was further treated with 30 % H_2O_2

solution (5 mL). The resulting mixture was washed with HCl and H_2O respectively, followed by filtration and drying, graphene oxide sheets were thus obtained ¹.

Computational Method

The graphene oxide (GO) cluster used for calculations has 40 Carbon atoms and 10 Oxygen atoms, which means there are 10 epoxy groups. The structure of GO used in this study is represented in Figure S2. Dangling bonds of the C atoms have been saturated with H atoms in order to result in the neutral cluster. The very similar structure of GO cluster used here has been utilized in a recent theoretical study ². One Pt and one Rh atom have been used to obtain PtRh@GO cluster that is to represent the PtRh@GO catalyst. These metal atoms have been located on p1 and p2 points (see Figure S2) on the GO cluster. A similar strategy in order to obtain Pt decorated GO cluster has been utilized during DFT calculations for methane to methanol on platinum-decorated sheets of graphene oxide ². Two Pt atoms have been located on some points that are similar to the points used in that study ².

The geometries were optimized geometrically using equilibrium geometry (EG) calculations and obtain adsorption energies. In the present study, energy difference values include zero-point energy (ZPE) corrections. These energies were calculated using the frequency keyword (freq) in Single Point Energy (SPE) calculations. In addition, vibrational frequency, thermal energy, thermal enthalpy, and thermal free energy values were calculated by SPE calculations at 298 K and atmospheric pressure in Gaussian software ^{3,4}. These energy values were computed as follows:

$$E = E_{electronic} + ZPE + E_{vibrational} + E_{rotational} + E_{translational}$$
(1)

$$H = E + RT$$

$$G = H - TS$$
(3)

where E is the sum of the electronic, zero point and thermal energies, H is the sum of the electronic and thermal enthalpies, G is the sum of electronic and thermal free energy, S is the Entropy and T is the temperature used for the vibrational frequency calculations. HOMO and LUMO representations and HOMO/LUMO energy values were calculated by a complete analysis of the population. The chemical hardness, electronegativity, electrophilicity, and chemical potential values were obtained to have information about the activity of the cluster by using the following equations. ϵ_{HOMO} is the highest occupied molecular orbital energy, and

 ϵ_{LUMO} is the lowest unoccupied molecular orbital energy. These equations based on the Koopman's approach ^{5–9} are given as follows.

Chemical hardness
$$(\eta) = \frac{I-A}{2}$$
 (4)
Chemical potential $(\mu) = -\frac{I+A}{2}$
(5)
Electronegativity $(\lambda) = -\mu$ (6)
Electrophilicity $(\omega) = \frac{\mu^2}{2\eta}$ (7)
where $I \cong -\epsilon_{HOMO}$ and $A \cong -\epsilon_{LUMO}$

The electron density (ED) and electron localization function (ELF) distribution maps have been obtained by using Multiwfn software ¹⁰. Moreover, NBO atomic charges of atoms were obtained by Natural Bond Orbital (NBO) analysis ¹¹. Natural Population Analysis (NPA) has been utilized to obtain occupation numbers of orbitals of metal atoms. Raman frequency and activity values have also been obtained by frequency calculation in Single Point Energy (SPE) calculation. The scaling factor ⁵ was used as 0.9613 for all frequency values to regenerate experimental basics.

The convergence criteria are $12x10^{-4}$ for gradients of root-mean-square (rms) displacement, $18x10^{-4}$ for max displacement, $3x10^{-4}$ for rms force and $45x10^{-5}$ for the max force for theoretical calculations utilized in this study. The theoretical methodology utilized here: Firstly, the Spin Multiplicity (SM) for the system including adsorbing molecule and the cluster has been determined by SPE calculations. SPEs were calculated for different numbers of SM for separate systems, and then the number of SM which gives the lowest energy based on SPE calculation was accepted to be the final SM number for the related system. Then, the adsorbing molecule (DMAB molecule here) and the cluster were structurally optimized by EG calculations. The following equation has been used in order to compute the relative energy values for calculations.

$$\Delta(E/H) = (E/H)_{System} - (E/H)_{Adsortive} - (E/H)_{Cluster}$$
(1)

Here, (E/H) _{System} is the calculated energy for the optimized system which contains the geometries of the adsorbing molecule and the cluster, (E/H) _{Adsorptive} is the calculated energy

for the adsorbing molecule, e.g. DMAB molecule and (E/H) _{Cluster} is the calculated energy for the original cluster.

Figure S1. ¹¹B NMR spectra of (a) DMAB and (b) reaction solution taken at the end of the PtRh@GO catalyzed dehydrogenation of DMAB at room temperature.

Table S1: Turnover frequency values of catalysts for DMAB dehydrogenation

Entry	(Pre) Catalysts	Conv.	Turnover	Ea	Temp.	Solvent	Ref.
		(%)	Frequency	(kJ.mol ⁻¹)	(°C)		
			(h ⁻¹)				

1	Graphene oxide	100	274.6	17	25	THF	This
	based binary						study
	Platinum-						
	Nanomaterials						
2	Carbon black hybrid	100	70.28	93.56	25	THF	12
	supported platinum						
	nanomaterials						
3	Graphene oxide-based	100	38.02	18.6	25	THE	13
	Palladium	100	50.02	10.0	20		
	Nonomentiales						
	Nanoparticles						14
4	Graphene oxide	100	271.90	38	25	THF	14
	stabilized Palladium-						
	Nickel Nanomaterials						
5	Ruthenium-based	100	727	49.43	25	THF	15
	trimetallic						
	nanomaterials						
6	Ruthenium-based	100	1.5	N/A	25	THF	16
	complex						
7	Titanium-based	100	12.3	N/A	25	THF	17
8	Chromium-based	97	13.4	N/A	N/A	THF	18
0	complex	100	450.57	26.52			10
9	Polymer-supported	100	458.57	36.52	N/A	IHF	19
	Ruthenium-Nickel						
	Nanoparticles						
10	Nickel-based complex	100	3.2	N/A	20	THF	20
11	Rhodium-based	100	0.9	N/A	25	THF	21
	complex						
12	TBA based Platinum	100	31.24	46.79	25	THF	22
13	Amylamine stabilized	100	15.0	63.9	25	THF	23
	Platinum						
	Nanoparticles						
14	PVP stabilized	100	330.94	50.78	25	THE	24
1	Palladium Cobalt		550.74	50.70	25		
	nononomialaz						
1.5	nanoparticles	100					25
15	Ru0/APTS	100	55	61.1	25	THF	25
16	Ru Cl ₃ .3H ₂ O	77	2.7	N/A	25	THF	25
17	$[\operatorname{Ru}(1,5\text{-cod})\operatorname{Cl}_2]n$	70	2.5	N/A	25	THF	25

18	PEDOT supported	100	451.28	50.78	25	THF	26
	Palladium Nickel						
	Nanoparticles						
19	Polymer-graphene	100	42.94	15.1	25	THF	27
	based Platinum						
	Nanomaterials						
20	Carbon-nanotube	100	775.28	13.72	25	THF	28
	Based Ruthenium-						
	cobalt nanoparticles						
21	RuCu@rGO	100	256.7	16.88	25	THF	29

Figure S2. The optimized structure of GO cluster with top view and side view (p1 and p2 represent the possible position for the location of Pt and Rh atom.

cluster with adsorbed DMAB molecule for location possibilities.								
	Locations of Pt and Rh atoms on p1 and p2 sites							
	PtRh@GO Clu	ster	PtRh@GO Cluster with adsorbed DMAB					
Energy Values (a.u.)	Rh-Pt	Pt-Rh	Rh-BMAB	Pt-BMAB				
Sum of electronic and	-	-	-2675.03883	-2675.33997				
thermal Energies (E)	2513.526198	2513.548457						
Sum of electronic and	-	-	-	-2675.339026				
thermal Enthalpies (H)	2513.525254	2513.547513	2675.302939					
Sum of electronic and	-	-	-	-2675.455122				
thermal Free Energies (G)	2513.627709	2513.648351	2675.419553					

References

- S1. Shahriary, L. & Athawale, A. A. Graphene Oxide Synthesized by using Modified Hummers Approach. International Journal of Renewable Energy and Environmental Engineering 02, (2014).
- 2. Wu, S.-Y., Lin, C.-H. & Ho, J.-J. Density-functional calculations of the conversion of methane to methanol on platinum-decorated sheets of graphene oxide. Phys. Chem. Chem. Phys. 17, 26191–26197 (2015).
- 3. Frisch, M. J. et al. Gaussian09 Revision D.01, Gaussian Inc. Wallingford CT. Gaussian 09 Revision C.01 (2010).
- 4. Foresman, J. & Frisch, A. Exploring chemistry with electronic structure methods, 1996 For Gaussian. Gaussian Inc, Pittsburgh, PA (1996).
- 5. Wong, M. W. Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 256, 391-399 (1996).
- 6. Pearson, R. G. Chemical hardness and density functional theory. J. Chem. Sci. 117, 369-377 (2005).
- 7. Suárez-Varela, J., Sakiyama, H., Cano, J. & Colacio, E. Interplay between covalent and aurophilic interactions in a series of isostructural 3D Hoffman-like frameworks

containing bipyrimidine and dicyanoaurate bridges. X-Ray structure and magnetic properties of {(μ -Au(CN) ₂] ₂ [(M(NH ₃) ₂) ₂ (μ -bpym)]}[Au(CN) ₂] ₂ (M = Ni(ii), Co(ii) and Cu(ii)). *Dalt. Trans.* **0**, 249–256 (2007).

- Parr, R. G. Density Functional Theory of Atoms and Molecules. in *Horizons of Quantum Chemistry* 5–15 (Springer Netherlands, 1980). doi:10.1007/978-94-009-9027-2_2
- 9. Pearson, R. G. The electronic chemical potential and chemical hardness. *J. Mol. Struct. THEOCHEM* **255**, 261–270 (1992).
- Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
- Glendening, E. D., Badenhoop, J. K., Reed, A. D., Carpenter, J. E. & Weinhold, F. NBO 3.1. *Theor. Chem. Institute, Univ. Wisconsin, Madison, WI* (1990).
- Sen, B., Şavk, A. & Sen, F. Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. *J. Colloid Interface Sci.* 520, 112–118 (2018).
- Şen, B. *et al.* Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamineborane. *Int. J. Hydrogen Energy* 43, 20176–20182 (2018).
- Sen, B., Kuzu, S., Demir, E., Akocak, S. & Sen, F. Monodisperse palladium–nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine–borane. *Int. J. Hydrogen Energy* 42, 23276–23283 (2017).
- Sen, B., Kuzu, S., Demir, E., Onal Okyay, T. & Sen, F. Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. *Int. J. Hydrogen Energy* (2017). doi:10.1016/j.ijhydene.2017.04.213
- Friedrich, A., Drees, M. & Schneider, S. Ruthenium-Catalyzed Dimethylamineborane Dehydrogenation: Stepwise Metal-Centered Dehydrocyclization. *Chem. - A Eur. J.* 15, 10339–10342 (2009).
- 17. Sloan, M. E. et al. Homogeneous Catalytic Dehydrocoupling/Dehydrogenation of

Amine–Borane Adducts by Early Transition Metal, Group 4 Metallocene Complexes. *J. Am. Chem. Soc.* **132**, 3831–3841 (2010).

- Kawano, Y. *et al.* Dehydrocoupling Reactions of Borane–Secondary and –Primary Amine Adducts Catalyzed by Group-6 Carbonyl Complexes: Formation of Aminoboranes and Borazines. *J. Am. Chem. Soc.* 131, 14946–14957 (2009).
- Sen, B. *et al.* Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. *J. Colloid Interface Sci.* (2018). doi:10.1016/j.jcis.2018.05.021
- Robertson, A. P. M., Suter, R., Chabanne, L., Whittell, G. R. & Manners, I. Heterogeneous Dehydrocoupling of Amine–Borane Adducts by Skeletal Nickel Catalysts. *Inorg. Chem.* 50, 12680–12691 (2011).
- Jaska, C. A., Temple, K., Lough, A. J. & Manners, I. Transition metal-catalyzed formation of boron-nitrogen bonds: Catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. *J. Am. Chem. Soc.* (2003). doi:10.1021/ja0301601
- Erken, E. *et al.* New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). *J. Clust. Sci.* 27, 9–23 (2016).
- Sen, F., Karatas, Y., Gulcan, M. & Zahmakiran, M. Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. *RSC Adv.* 4, 1526–1531 (2014).
- Çelik, B. *et al.* Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling. *RSC Adv.* 6, 24097–24102 (2016).
- Zahmakiran, M., Philippot, K., Özkar, S. & Chaudret, B. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature. *Dalt. Trans.* (2012). doi:10.1039/c1dt11290b
- 26. Sen, B., Kuzu, S., Demir, E., Yıldırır, E. & Sen, F. Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel

alloy nanoparticles assembled on PEDOT. *Int. J. Hydrogen Energy* **42**, 23307–23314 (2017).

- Sen, B., Kuzu, S., Demir, E., Akocak, S. & Sen, F. Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine–borane at room temperature. *Int. J. Hydrogen Energy* 42, 23284–23291 (2017).
- Sen, B., Kuzu, S., Demir, E., Akocak, S. & Sen, F. Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine–borane. *Int. J. Hydrogen Energy* 42, 23292–23298 (2017).
- Sen, B. *et al.* Monodisperse ruthenium–copper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB. *Int. J. Hydrogen Energy* (2019). doi:10.1016/j.ijhydene.2019.02.176