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Synthesis of graphene oxide (GO)

 Graphene oxide (GO) was synthesized from graphite powder using a modified Hummer’s 

method. In brief, 1 g of graphite and 0.5 g of sodium nitrate were mixed followed by the 

addition of 23 mL of conc. sulphuric acid under constant stirring. After 1 h, 3 g of KMnO4 

was added gradually to the above solution while keeping the temperature less than 20 °C to 

prevent overheating and explosion. The mixture was stirred at 35 °C for 12 h and the resulting 

solution was diluted by adding 500 mL of water under vigorous stirring. To ensure the 

completion of the reaction with KMnO4, the suspension was further treated with 30 % H2O2 
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solution (5 mL). The resulting mixture was washed with HCl and H2O respectively, followed 

by filtration and drying, graphene oxide sheets were thus obtained 1.

Computational Method

The graphene oxide (GO) cluster used for calculations has 40 Carbon atoms and 10 Oxygen 

atoms, which means there are 10 epoxy groups. The structure of GO used in this study is 

represented in Figure S2. Dangling bonds of the C atoms have been saturated with H atoms in 

order to result in the neutral cluster. The very similar structure of GO cluster used here has 

been utilized in a recent theoretical study 2. One Pt and one Rh atom have been used to obtain 

PtRh@GO cluster that is to represent the PtRh@GO catalyst. These metal atoms have been 

located on p1 and p2 points (see Figure S2) on the GO cluster. A similar strategy in order to 

obtain Pt decorated GO cluster has been utilized during DFT calculations for methane to 

methanol on platinum-decorated sheets of graphene oxide 2. Two Pt atoms have been located 

on some points that are similar to the points used in that study 2. 

The geometries were optimized geometrically using equilibrium geometry (EG) calculations 

and obtain adsorption energies. In the present study, energy difference values include zero-

point energy (ZPE) corrections. These energies were calculated using the frequency keyword 

(freq) in Single Point Energy (SPE) calculations. In addition, vibrational frequency, thermal 

energy, thermal enthalpy, and thermal free energy values were calculated by SPE calculations 

at 298 K and atmospheric pressure in  Gaussian software  3,4. These energy values were 

computed as follows:

(1)𝐸 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 +  𝑍𝑃𝐸  +  𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 +  𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 +  𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙

(2)𝐻 =  𝐸 +  𝑅𝑇 

(3)𝐺 =  𝐻 ‒  𝑇𝑆 

where E is the sum of the electronic, zero point and thermal energies, H is the sum of the 

electronic and thermal enthalpies, G is the sum of electronic and thermal free energy, S is the 

Entropy and T is the temperature used for the vibrational frequency calculations. HOMO and 

LUMO representations and HOMO/LUMO energy values were calculated by a complete 

analysis of the population. The chemical hardness, electronegativity, electrophilicity, and 

chemical potential values were obtained to have information about the activity of the cluster 

by using the following equations. ϵHOMO is the highest occupied molecular orbital energy, and 



ϵLUMO is the lowest unoccupied molecular orbital energy. These equations based on the 

Koopman’s approach 5–9 are given as follows.

(4)
𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝜂) =

𝐼 ‒ 𝐴
2

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (µ) =  ‒
𝐼 + 𝐴

2

(5)

(6)𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 (𝜆) =   ‒  µ

(7)
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐𝑖𝑡𝑦 (𝜔) =   

µ2

2𝜂

where  𝐼≅ ‒ 𝜖𝐻𝑂𝑀𝑂 𝑎𝑛𝑑 𝐴≅ ‒ 𝜖𝐿𝑈𝑀𝑂 

The electron density (ED) and electron localization function (ELF) distribution maps have 

been obtained by using Multiwfn software 10. Moreover, NBO atomic charges of atoms were 

obtained by Natural Bond Orbital (NBO) analysis 11. Natural Population Analysis (NPA) has 

been utilized to obtain occupation numbers of orbitals of metal atoms. Raman frequency and 

activity values have also been obtained by frequency calculation in Single Point Energy (SPE) 

calculation. The scaling factor 5 was used as 0.9613 for all frequency values to regenerate 

experimental basics.

The convergence criteria are 12x10-4 for gradients of root-mean-square (rms) displacement, 

18x10-4 for max displacement, 3x10-4 for rms force and 45x10-5 for the max force for 

theoretical calculations utilized in this study. The theoretical methodology utilized here: 

Firstly, the Spin Multiplicity (SM) for the system including adsorbing molecule and the 

cluster has been determined by SPE calculations. SPEs were calculated for different numbers 

of SM for separate systems, and then the number of SM which gives the lowest energy based 

on SPE calculation was accepted to be the final SM number for the related system. Then, the 

adsorbing molecule (DMAB molecule here) and the cluster were structurally optimized by EG 

calculations. The following equation has been used in order to compute the relative energy 

values for calculations.

                (1)∆(𝐸/𝐻) =  (𝐸/𝐻)𝑆𝑦𝑠𝑡𝑒𝑚 ‒ (𝐸/𝐻)𝐴𝑑𝑠𝑜𝑟𝑡𝑖𝑣𝑒 ‒ (𝐸/𝐻)𝐶𝑙𝑢𝑠𝑡𝑒𝑟

Here, (E/H) System is the calculated energy for the optimized system which contains the 

geometries of the adsorbing molecule and the cluster, (E/H) Adsorptive is the calculated energy 



for the adsorbing molecule, e.g. DMAB molecule and (E/H) Cluster is the calculated energy for 

the original cluster.

Figure S1. 11B NMR spectra of (a) DMAB and (b) reaction solution taken at the end of the 

PtRh@GO catalyzed dehydrogenation of DMAB at room temperature.

Table S1: Turnover frequency values of catalysts for DMAB dehydrogenation

Entry (Pre) Catalysts Conv. 
(%)

Turnover 
Frequency 

(h-1)

Ea 
(kJ.mol-1)

Temp. 
(°C)

Solvent Ref.



1 Graphene oxide 
based binary 
Platinum- 
Rhodium 
Nanomaterials

100 274.6 17 25 THF This 
study

2 Carbon black hybrid 

supported platinum 

nanomaterials

100 70.28 93.56 25 THF 12

3 Graphene oxide-based 

Palladium 

Nanoparticles

100 38.02 18.6 25 THF 13

4 Graphene oxide 

stabilized Palladium-

Nickel Nanomaterials

100 271.90 38 25 THF 14

5 Ruthenium-based 

trimetallic 

nanomaterials 

100 727 49.43 25 THF 15

6 Ruthenium-based 
complex

100 1.5 N/A 25 THF 16

7 Titanium-based 
complex

100 12.3 N/A 25 THF 17

8 Chromium-based 
complex

97 13.4 N/A N/A THF 18

9 Polymer-supported 

Ruthenium-Nickel 

Nanoparticles

100 458.57 36.52 N/A THF 19

10 Nickel-based complex 100 3.2 N/A 20 THF 20

11 Rhodium-based 
complex

100 0.9 N/A 25 THF 21

12 TBA based Platinum 
nanoparticles

100 31.24 46.79 25 THF 22

13 Amylamine stabilized 

Platinum 

Nanoparticles

100 15.0 63.9 25 THF 23

14 PVP stabilized 

Palladium-Cobalt 

nanoparticles

100 330.94 50.78 25 THF 24

15 Ru0/APTS 100 55 61.1 25 THF 25

16 Ru Cl3.3H2O 77 2.7 N/A 25 THF 25

17 [Ru (1,5-cod) Cl2]n 70 2.5 N/A 25 THF 25



18 PEDOT supported 

Palladium Nickel 

Nanoparticles

100 451.28 50.78 25 THF 26

19 Polymer-graphene 

based Platinum 

Nanomaterials

100 42.94 15.1 25 THF 27

20 Carbon-nanotube 

Based Ruthenium-

cobalt nanoparticles

100 775.28 13.72 25 THF 28

21 RuCu@rGO 100 256.7 16.88 25 THF 29

 

p1 p2 

Figure S2. The optimized structure of GO cluster with top view and side view (p1 and p2 

represent the possible position for the location of Pt and Rh atom.



 Table S2. Energy values for optimized geometries of PtRh@GO cluster and PtRh@GO 
cluster with adsorbed DMAB molecule for location possibilities.

Locations of Pt and Rh atoms on p1 and p2 sites
PtRh@GO Cluster PtRh@GO Cluster with 

adsorbed DMAB
Energy Values (a.u.) Rh-Pt Pt-Rh Rh-BMAB Pt-BMAB
Sum of electronic and 
thermal Energies (E)

-
2513.526198

-
2513.548457

-2675.03883 -2675.33997

Sum of electronic and 
thermal Enthalpies (H)

-
2513.525254

-
2513.547513

-
2675.302939

-2675.339026

Sum of electronic and 
thermal Free Energies (G)

-
2513.627709

-
2513.648351

-
2675.419553

-2675.455122
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