Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information for:

Redox-Switchable Ring-Opening Polymerization by Tridentate ONN-Type Titanium and Zirconium Catalysts

Alicia M. Doerr, Justin M. Burroughs, Nicholas M. Legaux, and Brian K. Long*

Department of Chemistry, University of Tennessee, Knoxville, TN 37996

e-mail: long@utk.edu

Table of Contents

NMR Spectroscopy	\$2-\$13
Polymerization Data	S14
Cyclic Voltammetry	\$15-\$17
UV-Vis Sprecta	S18
X-ray Crystallographic Data	\$19-\$22
GPC Analysis of Polymers	\$23-\$25
Kinetic Study of L-Lactide Polymerization	\$26-\$33

NMR Spectrum

Figure S1. ¹H NMR (300 MHz, 25 °C, CDCl₃) of **L2**, δ, ppm: 1.44 (s, 9H, CH₃), 2.32 (s, 6H, NCH₃), 2.67 (t, 2H, NCH₂), 3.72 (t, 2H, NCH₂), 4.21 (t, 2H, CpH), 4.24 (s, 5H, CpH), 4.48 (t, 2H, CpH), 7.28 (d, 1H, PhH), 7.42 (d, 1H, PhH), 8.34 (s, 1H, NCH).

Figure S2. ¹³C NMR (300 MHz, 25 °C, CDCl₃) of **L2**, δ, ppm: 29.3 (C(*C*H₃)), 35.0 (*C*(CH₃)), 45.86 (N*C*H₃), 45.89 (N*C*H₃), 57.4 (N*C*H₂), 59.9 (N*C*H₂), 65.9 (Cp-C), 68.7 (Cp-C), 70.0 (Cp-C), 71.3 (Cp-C), 85.8 (C≡C), 85.9 (C≡C), 112.9 (aromatic), 118.5 (aromatic), 132.6 (aromatic), 132.9 (aromatic), 138.0 (aromatic), 161.0 (aromatic), 165.8 (N*C*H).

Figure S3. ¹H NMR (300 MHz, 25 °C, C₆D₆) of **2**_{Ti}, δ, ppm: 1.20 (d, 18H, CH₃), 1.62 (s, 9H, CH₃), 2.13 (t, 2H, NCH₂), 2.44 (s, 6H,NCH₃), 2.94 (t, 2H, NCH₂), 3.97 (t, 2H, CpH), 4.15 (s, 5H, CpH), 4.56 (t, 2H, CpH), 4.71 (br, 3H, OCH), 7.38 (s, 2H, PhH), 7.87 (s, 1H, NCH).

Figure S4. ¹³C NMR (300 MHz, 25 °C, C₆D₆) of **2**_{Ti}, δ, ppm: 26.8 (CH(*C*H₃)₂), 29.7 (C(*C*H₃)₃), 35.5 (*C*(CH₃)₃), 49.8 (N*C*H₃), 56.0 (N*C*H₂), 60.0 (N*C*H₂), 67.3 (Cp-C), 68.8 (Cp-C), 70.2 (Cp-C), 71.5 (Cp-C), 74.0 (*C*H(CH₃)₂, 86.1 (C=C), 87.5 (C=C), 111.3 (aromatic), 122.3 (aromatic), 135.0 (aromatic), 135.9 (aromatic), 139.4 (aromatic), 161.5 (aromatic), 164.8 (N*C*H).

Figure S5. ¹H NMR (300 MHz, 25 °C, C₆D₆) of **2**_{zr}, δ, ppm: 1.20 (s, 18H, CH₃), 1.54 (s, 9H, CH₃), 1.61 (s, 9H, CH₃), 2.24 (t, 2H, NCH₂), 2.38 (s, 6H, NCH₃), 2.98 (t, 2H, NCH₂), 3.97 (t, 2H, CpH), 4.15 (s, 5H, CpH), 4.56 (t, 2H, CpH), 7.33 (s, 1H, PhH), 7.38 (d, 1H, PhH), 7.88 (d, 1H, NCH).

Figure S6. ¹³C NMR (300 MHz, 25 °C, C₆D₆) of 2_{zr} , δ , ppm: 30.1 (OC(CH₃)₃), 33.4 (C(CH₃)₃), 35.5 (C(CH₃)₃), 49.2 (NCH₃), 55.7 (NCH₂), 59.9 (NCH₂), 67.3 (Cp-C), 68.8 (Cp-C), 70.2 (Cp-C), 71.5 (Cp-C), 73.0 (OC(CH₃)₃), 85.9 (C=C), 87.6 (C=C), 111.1 (aromatic), 123.0 (aromatic), 135.4 (aromatic), 136.7 (aromatic), 140.1 (aromatic), 163.7 (aromatic), 164.2 (NCH).

Figure S7. ¹H NMR (300 MHz, 25 °C, C₆D₆) of **3**_{Ti}, δ, ppm: 1.23 (d, 18H, CH₃), 1.33 (s, 9H, CH₃), 1.77 (s, 9H, CH₃), 2.28 (t, 2H, NCH₂), 2.47 (s, 6H, CH₃), 3.21 (t, 2H, NCH₂), 4.80 (m, 3H, CH), 7.06 (d, 1H, PhH), 7.60 (s, 1H, NCH), 7.70 (d, 1H, PhH).

Figure S8. ¹³C NMR (300 MHz, 25 °C, C₆D₆) of **3**_{Ti}, δ, ppm: 26.9 (OCH(*C*H₃)₂), 30.1 (C(*C*H₃)₃), 31.7 (C(*C*H₃)₃), 34.1 (*C*(CH₃)₃), 35.8 (*C*(CH₃)₃), 49.5 (N*C*H₃), 56.3 (N*C*H₂), 60.1 (N*C*H₂), 74.2 (*C*(CH₃)₂), 96.6 (aromatic), 121.6 (aromatic), 128.1 (aromatic), 129.2 (aromatic), 138.0 (aromatic), 162.5 (aromatic), 162.8 (N*C*H).

Figure S9. ¹H NMR (300 MHz, 25 °C, C₆D₆) of **3**_{zr}, δ, ppm: 1.22 (br, 18H, OC(CH₃)₃), 1.32 (s, 9H, C(CH₃)₃), 1.56 (br, 9H, OC(CH₃)₃), 1.77 (s, 9H, C(CH₃)₃), 2.34 (t, 2H, NCH₂), 2.43 (s, 6H, NCH₃), 3.18 (t, 2H, NCH₂), 7.08 (d, 1H, PhH), 7.54 (s, 1H, NCH), 7.71 (d, 1H, PhH).

Figure S10. ¹³C NMR (300 MHz, 25 °C, C₆D₆) of **3**_{zr}, δ, ppm: 30.4 (OC(*C*H₃)₃), 31.7 (C(*C*H₃)₃), 33.5 (C(*C*H₃)₃), 34.1 (*C*(CH₃)₃), 35.8 (*C*(CH₃)₃), 49.3 (NCH₃), 56.0 (NCH₂), 60.1 (NCH₂), 122.2 (aromatic), 128.9 (aromatic), 129.6 (aromatic), 137.3 (aromatic), 138.8 (aromatic), 162.0 (aromatic), 164.8 (NCH).

Figure 11. ¹H NMR (300 MHz, 25 °C, acetone- d_6) of AgBAr^F, δ , ppm: 7.67 (s, 4H, aromatic), 7.79 (s, 8H, aromatic).

Figure S12. ¹H NMR spectra (400 MHz, 90 °C, C_6D_6) monitoring the polymerization of L-lactide initiated by catalyst **3**_{Ti}. Each trace represents an hourly progression of the reaction starting at 1 h and ending at 12 h. The bottom trace (1 h) shows a large presence of L-lactide with little to no polymer. The top trace (12 h) shows L-lactide has been mostly converted to polylactide (PLA). Throughout the 12 h the amount of internal standard (trimethoxybenzene (TMB)) remained constant.

Figure S13. ¹H NMR spectra (300 MHz, 25 °C, CDCl₃) of 2_{Ti} (bottom), 2_{Ti-ox} (middle), and 2_{Ti-red} (top). 2_{Ti-ox} was generated by the addition of AgBAr^F to 2_{Ti} in CDCl₃ followed by filtration into a J. Young NMR tube. 2_{Ti-red} was generated by the subsequent addition of CoCp₂ to the NMR tube. A shift in the peaks is seen between the bottom and middle spectra. Another shift in the peaks is seen between the middle and top spectra but the peaks in the top spectrum do not shift back to the same position as the peaks in the bottom spectrum.

Figure S14. ¹H NMR spectra (300 MHz, 25 °C, CDCl₃) of **1** (bottom), $\mathbf{1}_{ox}$ (middle), and $\mathbf{1}_{red}$ (top). $\mathbf{1}_{ox}$ was generated by the addition of 2 equivalence of AgOTf to **1** in CDCl₃ in a J. Young NMR tube. $\mathbf{1}_{red}$ was generated by the subsequent addition of CoCp₂ to the NMR tube. A shift in the peaks is seen between the bottom and middle spectra. Another shift in the peaks is seen between the middle and top spectra but the peaks in the top spectrum do not shift back to the same position as the peaks in the bottom spectrum.

Figure S15. ¹H NMR spectra (300 MHz, 25 °C, CDCl₃) of $\mathbf{2}_{zr}$ (bottom), $\mathbf{2}_{zr-ox}$ (middle), and $\mathbf{2}_{zr-red}$ (top). $\mathbf{2}_{zr-ox}$ was generated by the addition of AgBAr^F to $\mathbf{2}_{zr}$ in CDCl₃ followed by heating at 90 °C for 1 h in a J. Young NMR tube. $\mathbf{2}_{zr-red}$ was generated by the addition of AgBAr^F to $\mathbf{2}_{zr}$ in CDCl₃ followed by filtration into a new vial with CoCp₂ then addition to the NMR tube. A shift in the peaks is seen between the bottom and middle spectra. Another shift in the peaks is seen between the middle and top spectra with the peaks in the top spectrum shifting back to the same position as the peaks in the bottom spectrum.

Figure S16. Zoomed in ¹H NMR spectra (300 MHz, 25 °C, CDCl₃) of 2_{zr} (bottom), 2_{zr-ox} (middle), and 2_{zr-red} (top). 2_{zr-ox} was generated by the addition of AgBAr^F to 2_{zr} in CDCl₃ followed heating at 90 °C for 1 h in a J. Young NMR tube. 2_{zr-red} was generated by the addition of AgBAr^F to 2_{zr} in CDCl₃ followed by filtration into a new vial with CoCp₂ then addition to the NMR tube. A broadening as well as a shift in the ferrocenyl peaks is seen between the bottom and middle spectra. Another shift in the peaks is seen between the middle and top spectra with the peaks in the top spectrum shifting back to the same position as the peaks in the bottom spectrum.

Figure S17. ¹H NMR spectra (300 MHz, 25 °C, CDCl₃) of $\mathbf{2}_{zr}$ + 1.2 eq. CoCp₂ (bottom), $\mathbf{2}_{zr}$ (middle), and CoCp₂ (top). Every peak in the bottom spectrum can be accounted for from either the middle or top spectra indicating that the CoCp₂ has no direct effect on $\mathbf{2}_{zr}$.

Polymerization Data

Figure S18. Plot of monomer conversion (%) versus time (h) for the polymerization of L-lactide (100 eq, 1M) in CDCl₃ at 90 °C using 2_{Ti} (red circles), 2_{Ti-ox} (blue circles), and 2_{Ti-red} (green circles). Using AgBAr^F as an oxidizing agent and CoCp₂ as a reducing agent.

Figure S19. Plot of monomer conversion (%) versus time (h) for the polymerization of L-lactide (100 eq, 1 M) in CDCl₃ at 90 °C using 2_{zr} (red circles), 2_{zr} + 1 eq. CoCp₂ (purple circles), and 2_{zr-red} generated with excess (1.5 eq.) CoCp₂ (orange circles).

Cyclic Voltammetry

Figure S20. Cyclic voltammogram of catalyst $\mathbf{2}_{Ti}$ (0.01 mmol) recorded at a scan rate of 100 mV/s in dichloromethane (5 mL), (*n*Bu)₄NPF₆ (0.20 M), (E_{1/2} = -0.03 V) versus Fc/Fc⁺.

Figure S21. Cyclic voltammogram of catalyst 2_{zr} (0.01 mmol) recorded at a scan rate of 100 mV/s in dichloromethane (5 mL), (*n*Bu)₄NPF₆ (0.20 M), (E_{1/2} = 0.03 V) versus Fc/Fc⁺.

Figure S22. Zoomed in cyclic voltammogram of catalyst 2_{zr} (0.01 mmol) recorded at a scan rate of 100 mV/s in dichloromethane (5 mL), (*n*Bu)₄NPF₆ (0.20 M), ($E_{1/2}$ = 0.03 V) versus Fc/Fc⁺.

Figure S23. Cyclic voltammogram of catalyst $\mathbf{3}_{Ti}$ (0.01 mmol) recorded at a scan rate of 100 mV/s in dichloromethane (5 mL), (*n*Bu)₄NPF₆ (0.20 M).

Figure S24. Cyclic voltammogram of catalyst $\mathbf{3}_{zr}$ (0.01 mmol) recorded at a scan rate of 100 mV/s in dichloromethane (5 mL), (*n*Bu)₄NPF₆ (0.20 M).

UV-Vis Spectra

Figure S25. UV-Vis Spectra of 2_{zr} (4.2 x 10⁻⁵ M) (red), 2_{zr-ox} (4.2 x 10⁻⁵ M) (blue), L2 (4.2 x 10⁻⁵ M) (orange), and AgBAr^F (4.2 x 10⁻⁵ M) (gray).

X-Ray Crystallographic Data

Figure S26. ShelXle representation of 2_{Ti} with thermal ellipsoids drawn at 50% probability. Hydrogens were omitted for clarity. X-ray quality single crystals of 2_{Ti} were obtained via recrystallization from hexanes upon cooling to -20 °C. Crystal data for $C_{36}H_{55}FeN_2O_4Ti$ (680.53 g/mol); monoclinic; space group P2(1)/c; a= 22.6283(13) Å; b= 8.7736(5) Å; c= 18.5643(10) Å; α = 90°; β = 105.170(2)°; γ = 90°; V = 3557.2(3) Å³; Z = 2; T = 100(2) K; λ = 0.71073 Å; μ = 0.670 mm⁻¹; R₁= 0.0496; wR₂= 0.1381 for 44,451 reflections; GOF = 1.027. CCDC Reference Number: 1993768

Figure S27. ShelXle representation of 2_{zr} with thermal ellipsoids drawn at 50% probability. Hydrogens were omitted for clarity. X-ray quality single crystals of 2_{zr} were obtained via recrystallization from hexanes upon cooling to -20 °C. Crystal data for $C_{39}H_{58}FeN_2O_4Zr$ (765.97 g/mol); monoclinic; space group P2(1)/c; a= 22.8642(12) Å; b= 9.1582(5) Å; c= 19.4463(10) Å; α = 90°; β = 106.4470(10)°; γ = 90°; V = 3905.3(4) Å³; Z = 4; T = 100(2) K; λ = 0.71073 Å; μ = 0.677 mm⁻¹; R₁= 0.0353; wR₂= 0.0841 for 51,591 reflections; GOF = 1.011. CCDC Reference Number: 1993769

Figure S28. ShelXle representation of $\mathbf{3}_{Ti}$ with thermal ellipsoids drawn at 50% probability. Hydrogens and pentane molecules were omitted for clarity. X-ray quality single crystals of $\mathbf{3}_{Ti}$ were obtained via recrystallization from a concentrated pentanes solution upon cooling to -20 °C. Crystal data for C₂₈H₅₂N₂O₄Ti (528.60 g/mol); monoclinic; space group P2(1)/c; *a*= 26.1034(16) Å; *b*= 13.6068(8) Å; *c*= 18.7389(11) Å; α = 90°; β = 90.427(2)°; γ = 90°; V = 6655.6(7) Å³; Z = 14; T = 100(2) K; λ = 0.71073 Å; μ = 0.290 mm⁻¹; R₁= 0.0656; wR₂= 0.1482 for 202,143 reflections; GOF = 1.185. CCDC Reference Number: 1993770

Figure S29. ShelXle representation of $\mathbf{3}_{zr}$ with thermal ellipsoids drawn at 50% probability. Hydrogens were omitted for clarity. X-ray quality single crystals of $\mathbf{3}_{zr}$ were obtained via recrystallization from a concentrated pentanes solution upon cooling to -20 °C. Crystal data for $C_{31}H_{58}N_2O_4Zr$ (614.04 g/mol); triclinic; space group P-1; a= 9.0808(8) Å; b= 9.9464(8) Å; c= 21.5037(18) Å; α = 93.147(3)°; β = 91.175(3)°; γ = 115.995(2)°; V = 1741.0(3) Å³; Z = 2; T = 100(2) K; λ = 0.71073 Å; μ = 0.349 mm⁻¹; R_1 = 0.0459; w R_2 = 0.1051 for 60,166 reflections; GOF = 0.918. CCDC Reference Number: 1993771

GPC Analysis of Polymers

Figure S30. GPC trace of PLA obtained using 2_{Ti} . Samples measured in THF at 30 °C and reported as absolute molecular weights (Table 1, Entry 1).

Figure S31. GPC trace of PLA obtained using 2_{zr} . Samples measured in THF at 30 °C and reported as absolute molecular weights (Table 1, Entry 2).

Figure S32. GPC trace of PLA obtained using $\mathbf{3}_{Ti}$. Samples measured in THF at 30 °C and reported as absolute molecular weights (Table 1, Entry 3).

Figure S33. GPC trace of PLA obtained using 3_{zr} . Samples measured in THF at 30 ° C and reported as absolute molecular weights (Table 1, Entry 4).

Figure S34. GPC trace of PLA obtained using 2_{zr} . Samples measured in THF at 30 ° C and reported as absolute molecular weights.

Figure S35. GPC trace of PLA obtained using 2_{zr-red} . Samples measured in THF at 30 ° C and reported as absolute molecular weights.

Kinetic Study for L-Lactide Polymerization

Figure S36. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using **1** (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S37. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using $\mathbf{1}_{ox}$ (left graph), and a plot of ln(L-lactide₀/L-lactide_t) vs time (h) to study the polymerization kinetics (right graph).

Figure S38. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using $\mathbf{1}_{red}$ (left graph), and a plot of ln(L-lactide₀/L-lactide_t) vs time (h) to study the polymerization kinetics (right graph).

Figure S39. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using 2_{Ti} (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S40. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using $\mathbf{2}_{Ti-ox}$ (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S41. Polymerization of 100 equivalents of L-lactide in CDCl₃ at 90 °C using 2_{Ti} (left graph), and a plot of ln(L-lactide₀/L-lactide_t) vs time (h) to study the polymerization kinetics (right graph).

Figure S42. Polymerization of 100 equivalents of L-lactide in CDCl₃ at 90 °C using $\mathbf{2}_{Ti-ox}$ (left graph), and a plot of ln(L-lactide₀/L-lactide_t) vs time (h) to study the polymerization kinetics (right graph).

Figure S43. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using 2_{zr} (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S44. Polymerization of 100 equivalents of L-lactide in $CDCI_3$ at 90 °C using 2_{zr} (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S45. Polymerization of 100 equivalents of L-lactide in CDCl₃ at 90 °C using $\mathbf{2}_{zr-ox}$ (left graph), and a plot of ln(L-lactide₀/L-lactide_t) vs time (h) to study the polymerization kinetics (right graph).

Figure S46. Polymerization of 100 equivalents of L-lactide in $CDCl_3$ at 90 °C using 2_{zr-red} (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S47. In situ switching polymerization of 100 equivalents of L-lactide in $CDCl_3$ at 90 °C starting from native catalyst 2_{2r} and switching at 2.5 hours and 4.5 hours (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (min) to study the polymerization kinetics before and after the switch (right graph).

Figure S48. In situ switching polymerization of 100 equivalents of L-lactide in $CDCl_3$ at 90 °C starting from native catalyst 2_{zr} and switching to 2_{zr-ox} with the addition of 1 eq. AgBAr^F and 2_{zr-red} with the addition of 1 eq. CoCp₂ at the indicated time points.

Figure S49. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using $\mathbf{3}_{Ti}$ (left graph), and a plot of $\ln(L-\text{lactide}_0/L-\text{lactide}_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S50. Polymerization of 100 equivalents of L-lactide in C_6D_6 at 90 °C using $\mathbf{3}_{zr}$ (left graph), and a plot of $ln(L-lactide_0/L-lactide_t)$ vs time (h) to study the polymerization kinetics (right graph).

Figure S51. Comparison of k_{obs} for each catalyst in the native state and oxidized state (when applicable). Conditions: 10 µmol catalyst, 0.7 mmol L-lactide, 1 M, 90 °C. ^{*a*}solvent = C₆D₆, ^{*b*}solvent = CDCl₃.