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1 Implementation of the Model

A Python implementation of the model can be accessed at http://www.bitbucket.org/

mmmontemore/surfep. This includes fitting parameters in a human-readable form and

template files to build structures.

2 Error Distributions

The distribution of errors for the adsorption energies are shown in Figure S1.

a) b)

Figure S1: Histograms of errors for predicting adsorption energies for the model described
in the main text. a) Absolute errors; b) percent errors.
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Figure S2: Histograms of errors for predicting adsorption energies for the model described
in the main text, separated by adsorption site. The sites are ordered from weakest average
binding (top) to strongest average binding (hollow). a) Absolute errors; b) percent errors.

Figure S3: Histograms of errors for predicting adsorption energies for the model described
in the main text, separated by adsorbate. The adsorbates are ordered from weakest
average binding (K) to strongest average binding (C). a) Absolute errors; b) percent
errors.

In all cases, the MAPE is roughly 5 to 10%, while the MAE varies much more widely.

The MAE is higher for cases where adsorption is stronger. We also tested a separation

of data points across different metals. For adsorption energies of OH adsorbed on an

alloy that includes Au, the MAE is 0.175 eV, while for alloys that include Ti the MAE

increases to 0.251 eV. This is expected, as Ti binds OH more strongly than Au. The

MAPE is much more constant: 8.3% for the Au data points and 7.8% for the Ti data
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points.

3 Model Equation and Tested Features

In addition to the tight-binding coupling elements, the features we tested were the d-

orbital radius rd, idealized d-band filling fd (which is equivalent to the group for the set

of metals we consider here), the atomic number, atomic radius, covalent radius, electron

affinity, electronegativity, heat of fusion, period, specific heat, heat of vaporization,

thermal conductivity, melting point, electrical conductivity, and thermal expansion

coefficient. The final model equation, written out explicitly, is:

Eads = a1+a2(b1+b2fd,n+b3σn+b4V
2
pd)+a3(b5+b6V

2
pd)+a4(b7+b8fd,n)fd+a5(b7+b8fd,n).

(1)

4 Model Validation on Experimental Data

To show that our model can be used to predict experimentally measured catalytic

performance, we extracted data from previous work and used it to construct volcano

plots based on our efficient predictions. As shown in Figure S4, our adsorption energy

predictions are accurate enough to rationalize and predict experimental trends in catalytic

performance. Our calculations also closely match the trends in previous DFT calculations

of these systems, which results in volcano plots that look very similar to previous work.1–3
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Figure S4: a-c) Volcano plots where experimental reaction rates are plotted against
efficient predictions created using our final model. b-d) The accuracy of these
volcano plots for predicting the experimental rates. The reactions are a,d) ammonia
decomposition,4 b,e) the oxygen reduction reaction on Pt overlayers on other metal
surfaces,3 and c,f) the oxygen reduction reaction on Pt3M1 alloys,2 which we modeled as
Pt/M/Pt sandwiches as this mimics the structure determined experimentally.

5 Application of the Model to Stepped Surfaces

In addition to the fitting described in detail in the main text, we fit our framework to a

database of more than 5000 H adsorption energies on a Ag(211) surface substitutionally

doped with most other d-block metals.5 Similar to previous work on this data set,

non-physical data points were removed (e.g., those consisting of significant surface

reconstruction). We also removed metals considered in the previous work but not in the

current work, such as Cd. We fit directly from the underlying features, fd,n, σn, V 2
pd, to

the adsorption energies. These features were averaged over the surface atoms comprising

the adsorption site for the H atom in each case. Fitting was performed separately for

each dopant present in the adsorption site, but all site types (top, bridge, hollow) were

fit together. Because this is a large data set, we used only 60% of the data for fitting and
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used 40% of the data as test data. The training and test RMSE values were both 0.10 eV

(see Figure S5). These errors are quite insensitive to the size of the test-train split as well

as the random seed for the test-train split. While a more sophisticated fitting process

and more careful consideration of the structure may improve the accuracy, this relatively

simple test demonstrates that our model can be applied to other geometries and remain

accurate enough to be useful.

We performed some simple comparisons between the fitting parameters here and those

in the main text, but did not find close correspondence. This may be partly due to

differences in the fitting process and the computational setup. It is possible that changes

in geometry could be accounted for by correctly incorporating additional features, such

as the orbitalwise coordination number,6 which would be similar to the V 2
pd feature we

use here.

This dataset was created using different computational parameters than those in the

main text, as detailed previously.5 Briefly, the PBE7 exchange-correlation functional was

used with the Tkatchenko-Scheffler method8 for van der Waals interactions. The (211)

surface was modeled with 4 layers along the (111) direction and 4 atoms along the step

edge. Atoms in the bottom of these 4 layers were fixed at their bulk positions. The

k-point mesh was 7×7×1, and the energy cutoff was 400 eV. Spin polarization was not

used.

a) b)

Figure S5: a) Parity plot for the predictions on stepped surfaces. Black points are the
training set; red points are the test set. b) Histogram of the model’s test-set errors.
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6 Explanation of Adsorption Energy Difference

Due to its structure, the model allows differences in adsorption energy to be rationalized.

For example, we can explain why the FeCu surface mentioned in the main text and shown

in Figure S10 has a weaker adsorption energy for N than a pure Fe surface. In these two

cases, all contributions are quite similar except the p-band contribution, as captured by

the predicted np value and its coefficient (Figure S6).
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Figure S6: Contributions to the adsorption energy of N, as predicted by the model on an
FeCu surface (Figure S10) and to an fcc(111) Fe surface.

7 N and O Adsorption Energies as Related to NO

Decomposition
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Figure S7: Predicted N and O adsorption energies for the 1.6 × 107 sites described in
the main text. The location of the predicted maximum activity for NO decomposition is
indicated.

8 Possible Improvements to Model Accuracy

For bridge and hollow sites, we calculate site properties as a simple, unweighted average

over the properties of each atom in the site. In some cases, we may expect that a weighted

average would improve the accuracy, particularly when one of the atoms in the site binds

the adsorbate much more strongly and induces an asymmetric adsorption geometry. In

previous work, we tested some other ways to weight the various atoms in a site but found

that these had little effect on the overall accuracy.9 In any case, our current framework

gives reasonable results, as evidenced by the accuracy of our model, even in alloy sites.

This may be due to partial compensation effects, as movement towards a bridge or top

site of a pure metal surface often will result in decreased stability, and this may partially

compensate the increase in stability due to stronger bonding to a reactive atom. Further,

the reasonable accuracy we obtain may be partly because adsorbates in a hollow site with

very reactive atoms and very inert atoms can relax all the way to top or bridge sites with

only reactive atoms, and we use the final site for fitting the model. When screening, this

effect can be easily accounted for by checking predicted adsorption energies in neighboring

sites. If a neighboring bridge or top site is much more stable than the hollow site, the

hollow site should be considered unstable.

We use a single set of fitting parameters for each adsorbate and site, regardless of the

elements in the surface. We performed some simple tests to see if separate adsorbate

fitting parameters for different groups of hosts (e.g., late transition metals vs. early

transition metals) would improve the accuracy. These simple tests suggest that this

may reduce the error by 5 to 15%, although more data would be needed for a rigorous

test.

Fitting directly from the structures to the adsorption energies, without fitting to

electronic structure parameters, reduces the errors to an RMSE of 0.35 eV and an MAE
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of 0.25. Previous work has also seen lower errors for direct fitting.10 This alternative

model is thus has roughly 15% lower error than the text in our main text, although it is

more difficult to fit and less interpretable. Hence, both approaches may be more useful

in different situations.

9 Brief Comparison to Previous Work

Previous work with a smaller dataset of alloy surfaces in two configurations (a 1% impurity

and an overlayer structure) was able to predict the d-band center with RMSEs of 0.18 and

0.19 eV for each structure.11 This is comparable to our RMSE of 0.19 eV for the d-band

center. Each configuration was fit separately with different features using a nonlinear

model. 6 features were used in each case. The top feature in both feature sets was

the host metal’s group, which is closely related to our top feature for predicting the d-

band center, fd,n. This previous study did not directly address other electronic structure

features or adsorption. Another previous study considered six adsorbates (C, CH, CO,

H, O, OH) on alloys of nine late transition metals in the fcc(211) structure.12 Linear

regression was used on non-linear combinations of features. The features included band

properties, which require an DFT calculation of the density of states for each new surface.

There is some similarity in some features between this work and ours, as they included V 2
ad,

the d-band center, and the s-p band filling. They also included nearest neighbor distances

and the d-orbital radius, which are related to our feature V 2
pd. The RMSEs were found

to be 0.17 to 0.24 eV, somewhat less than our overall error of 0.41 eV. Another previous

study considered C1-C2 species on alloys in three configurations, featuring combinations

of 12 host metals and 3 guest metals.13 This study allows DFT calculations for species on

a particular surface to be combined in order to make predictions for other species. The

MAE was 0.19 eV, somewhat smaller than our overall MAE of 0.29. Finally, previous work

has used active learning and nonlinear models to predict H and CO adsorption energies

on different sites of various surface facets of bulk intermetallics, with no substitutional

doping.14 A very large dataset with thousands of points was needed to gain an accurate
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model. The RMSEs were 0.46 and 0.41 eV, similar to that of our model.

In summary, while these studies have various strengths and weaknesses, our model

is much more general and data-efficient than these previous approaches, allowing for

increased reusability. Specifically, we consider a wider array of adsorbates and possible

arrangements of surface dopants, and generally consider a wider array of metals. Our

model also allows adsorption energy predictions directly from the structure with no

quantum chemical calculations, which makes it several orders of magnitude faster

than strategies that require DFT calculations. We also have a simple model that is

interpretable and has few features. Our errors are typically 1 to 2 times larger than this

previous work, though direct comparison of numbers can be difficult due to differences

in datasets.

10 Model Accuracy for Activity

To check the accuracy and utility of our model, we performed a number of DFT

calculations of N and H adsorption energies after the model creation process was

completed. We then compared predicted activity between the model and the DFT

calculations, as shown in Figure S8. The errors in predicting these adsorption energies are

comparable to the errors in predicting the adsorption energies used to create the model.

We also found that errors tend to be similar for similar surfaces. This demonstrates that

the predictions are accurate enough to be useful in catalyst design.
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Figure S8: Density plots of catalytic activity vs. cost for a large number of surface sites,
as shown in main text. For some sites, DFT calculations were performed after-the-fact,
and the predictions from DFT (filled circles) are compared to the predictions from the
model (empty circles).

11 Simple Stability Test

Given an alloy surface AxBy with A substitutionally doped into B, we define a simple test

of the stability by comparing to the energies of the pure B surface and the bulk energies

of A and B:

∆E = E(AxBy) − E(Bsurf) + nE(Bbulk) −mE(Abulk), (2)

where n and m are chosen to account for the number of each element in the alloy. A

more negative ∆E indicates a surface that is more likely to be stable. We calculated ∆E

using bare surfaces and with N adsorbed on the surface. We calculated this quantity for

several of the surfaces we used to test our N prediction model (Figure S10). As shown in

Figure S10, these surfaces range significantly in their ∆E value, and several have negative

∆E values. In most cases, adsorbed N decreases the value of ∆E.
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Figure S9: A simple stability test (Equation (2)) for several surfaces tested for their N
adsorption properties after the model was finished.

12 Shifts in Volcano Plots

We extracted several volcano plots from previous work. To account for differences in

computational setup, reference state (e.g., gas-phase O vs. gas-phase O2), and zero-point

energy (for hydrogen evolution), we shifted the volcano plots from previous work using

a reference surface where the adsorption energy was available both in our dataset and

in the previous work. We chose a reference surface near the top of the volcano in all

cases. The shifts were (in eV): 6.17 for ammonia synthesis; 5.355 (N) and 3.678 (O) for

NO decomposition; 0.043 (C) and 0.378 (O) for aqueous-phase hydrogenation; -2.680 for

hydrogen evolution; 8.607 (C) and 5.608 (O) for methane oxidation; -2.446 for the oxygen

reduction reaction; and 0.343 for solid oxide fuel cells.

13 Example Alloy Structure

We show an example FeCu alloy structure in Figure S10.
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Figure S10: Visualization of N adsorbed on an FeCu alloy surface. The larger, orange
atoms are Fe, and the smaller, yellow atoms are Cu.

The coordinates for this structure, in extended .xyz format, are:

37

Lattice="7.753119 0.0 0.0 3.876559 6.714398 0.0 0.0 0.0 23.908118"

Cu 7.70024797 4.48476587 15.05579932

Cu 5.13778686 4.47982376 15.07726788

Cu 6.45115183 2.23438063 15.11909694

Cu 2.55180188 -0.02125607 15.08110804

Cu 11.61568610 6.71419540 15.07080546

Cu 10.35840080 5.97726776 12.93564982

Cu 3.87108294 3.71661319 12.98274740

Cu 9.02509032 3.75182393 12.95842678

Cu 2.57148651 1.49480461 12.96021977

Cu 9.04530548 5.22230955 10.89899298

Cu 6.46093248 5.22230955 10.89899298

Cu 3.87655949 5.22230955 10.89899298

Cu 7.75311898 2.98417689 10.89899298

Cu 5.16874599 2.98417689 10.89899298

Cu 2.58437299 2.98417689 10.89899298

Cu 6.46093248 0.74604422 10.89899298

Cu 3.87655949 0.74604422 10.89899298

Cu 1.29218650 0.74604422 10.89899298

Cu 7.75311898 4.47626533 8.78886127

Cu 5.16874599 4.47626533 8.78886127

Cu 2.58437299 4.47626533 8.78886127

Cu 6.46093248 2.23813267 8.78886127

Cu 3.87655949 2.23813267 8.78886127

Cu 1.29218650 2.23813267 8.78886127
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Cu 5.16874599 0.00000000 8.78886127

Cu 2.58437299 0.00000000 8.78886127

Cu 0.00000000 0.00000000 8.78886127

Fe 10.25516736 4.55094603 15.03645731

Fe 3.92379271 2.11437934 15.02155118

Fe 9.01901148 2.24834258 15.03046670

Fe 5.17052491 0.00313573 14.94055645

Fe 7.73199910 5.99953627 13.01380524

Fe 5.21657546 5.95739343 13.00712575

Fe 6.44446359 3.71470744 13.01020565

Fe 5.18738629 1.49863943 13.03807371

Fe 7.69713983 1.51398045 13.03655389

N 2.66877264 3.01876761 15.89666948
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