Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information

Low temperature benzene oxidation over copper-silver catalyst: roles of copper oxide and silver on cerium-zirconium mixed oxide[†]

Jin Hee Lee,^a Hyeyeon Jang,^{ab} Jeong-Hun Kim,^a Ji Hoon Park,^a Kwan-Young Lee,^b Min Bum Park,^c Sung Bong Kang,^d Tae-Sun Chang^{*a} and Iljeong Heo^{*a}

^aCenter for Environment & Sustainable Resources, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
^bDepartment of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
^cDepartment of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea
^dSchool of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea

*Corresponding authors: tschang@krict.re.kr (T.-S.C.), zaiseok@krict.re.kr (I.H.)

Table S1 Elemental composition of CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) measured by ICP-AES

Element	Cu	Ag	Si	Na
Content (wt.%)	13.6	19.3	0.0062	n.d.ª

^a Detection limit of Na < 0.00030 wt.% (3.0 ppm)

Fig. S1 CO₂ selectivity as a function of temperature over the CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) catalyst. Feed gas composition: 150 ppm C₆H₆, 2.5 vol.% H₂O, air balance. GHSV = 100,000 h⁻¹.

Fig. S2 Comparison of the catalytic activities of CZCuAg and some reported catalysts for benzene oxidation.¹

Fig. S3 Average benzene conversion as a function of reaction temperature obtained from three repeated reproducibility tests for benzene oxidation over (a) CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) and (b) PtPd/ γ -Al₂O₃ catalysts. Feed gas composition: 150 ppm C₆H₆, 2.5 vol.% H₂O, air balance. GHSV = 100,000 h⁻¹.

Fig. S4 Benzene oxidation catalyzed by CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) under water on/off cycle. 150 ppm/air balance C_6H_6 was fed into the catalyst bed at 250 °C with GHSV = 100,000 h⁻¹ under 2.5 vol.% H₂O on/off cycle.

Fig. S5 Benzene oxidation catalyzed by CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) at 250 °C in the presence of water. Feed gas composition: 150 ppm C_6H_6 , 2.5 vol.% H₂O, air balance. GHSV = 100,000 h⁻¹.

Fig. S6 Light-off curve for benzene oxidation obtained from the CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) catalyst thermally aged at 800 °C for 5 h in air. Feed gas composition: 150 ppm C_6H_6 , 5.0 vol.% H₂O, air balance. GHSV = 100,000 h⁻¹.

Fig. S7 (a) Cu 2p XPS spectra of CZCu (CZ:Cu = 1:1) and CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) and (b) Ag 3d spectra of CZAg (CZ:Ag = 1:1) and CZCuAg (CZ:Cu:Ag = 1:0.5:0.5).

Fig. S8 STEM image and cerium, zirconium, oxygen, silver, copper, and/or aluminum EDX elemental mapping of (a) CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) and (b) CuAg/ γ -Al₂O₃.

Fig. S9 N₂-physisorption isotherms for CZCuAg (CZ:Cu:Ag = 1:0.5:0.5) and CuAg/ γ -Al₂O₃.

Fig. S10 DRIFT spectra during the benzene oxidation at RT over (a) support CZ and (b) $CuAg/\gamma$ -Al₂O₃. Each sample was pretreated with 10% O₂/N₂ at 400 °C for 1 h and 150 ppm of benzene/N₂ was introduced at RT. The spectra were collected every 10 min.

Fig. S11 Benzene adsorption curves at RT for CZCu, CZAg and CZCuAg catalysts. 150 ppm of benzene/air was introduced with GHSV of 100,000 h⁻¹.