Supporting Information

Effective N-methylation of nitroarenes with methanol catalyzed by a functionalized NHC-based iridium catalyst: a green approach to N-methyl amines

Miguel González-Lainez,[†] M. Victoria Jiménez,^{*,†} Vincenzo Passarelli^{†,‡} and Jesús J. Pérez-Torrente^{*,†}

[†] Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza – CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

[‡] Centro Universitario de la Defensa, Ctra Huesca S/N 50090 Zaragoza, Spain

Contents

1 ¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of compounds 1-4.	S2
2 Intermolecular contacts in the crystal structure of 3 .	S10
3 Catalyst screening and optimization.	S15
4 Isotopic labeling experiments.	S16
5 Isolation and characterization of N-methylated amines.	S17
6 References.	S30

1.- ¹H and ¹³C{¹H} NMR spectra of compounds 1-4.

Figure S1. ¹H NMR spectrum of [^tBuHImCH₂PyCH₂Br]Br (1) registered in CDCl₃.

Figure S2. ¹³C NMR APT of [^tBuHImCH₂PyCH₂Br]Br (1) registered in CDCl₃.

Figure S3. ¹H-¹H COSY of ['BuHImCH₂PyCH₂Br]Br (1) registered in CDCl₃.

Figure S4. ¹H-¹³C HSQC of [^tBuHImCH₂PyCH₂Br]Br (1) registered in CDCl₃.

Figure S5. ¹H NMR of [^tBuHImCH₂PyCH₂OMe]Br (2) registered in CDCl₃.

Figure S6. ¹³C NMR APT of [^tBuHImCH₂PyCH₂OMe]Br (2) registered in CDCl₃.

Figure S7. ¹H-¹H COSY of [^tBuHImCH₂PyCH₂OMe]Br (2) registered in CDCl₃.

Figure S8. ¹H-¹³C HSQC of [^tBuHImCH₂PyCH₂OMe]Br (2) registered in CDCl₃.

Figure S9. ¹H NMR of $[IrBr(cod)(\kappa-C-{}^{t}BuImCH_2PyCH_2OMe)]$ (3) registered in CDCl₃.

Figure S10. ¹³C NMR APT of [IrBr(cod)(κ -*C*-^tBuImCH₂PyCH₂OMe)] (**3**) registered in C₆D₆.

Figure S11. ¹H-¹H COSY of [IrBr(cod)(κ -*C*-^tBuImCH₂PyCH₂OMe)] (**3**) registered in CDCl₃.

Figure S12. ¹H-¹³C HSQC of [IrBr(cod)(κ -*C*-^tBuImCH₂PyCH₂OMe)] (**3**) registered in CDCl₃.

Figure S13. ¹H NMR of $[IrBr(CO)_2(\kappa-C-^{t}BuImCH_2PyCH_2OMe)]$ (4) registered in CDCl₃.

Figure S14. ¹³C NMR APT of [IrBr(CO)₂(κ -C-^tBuImCH₂PyCH₂OMe)] (4) registered in CDCl₃.

Figure S15. ¹H-¹H COSY of $[IrBr(CO)_2(\kappa-C-^tBuImCH_2PyCH_2OMe)]$ (4) registered in CDCl₃.

Figure S16. ¹H-¹³C HSQC of [IrBr(CO)₂(κ -*C*-^tBuImCH₂PyCH₂OMe)] (4) registered in CDCl₃.

2.- Intermolecular contacts in the crystal structures of 3 and 4.

2.1- Intermolecular contacts in the crystal structure of $[IrBr(cod)(\kappa C-$ ^tBuImCH₂PyCH₂OMe)] (3).¹

Intermolecular contacts Br···H(15)' and H(27b)···C(14)" renders double chains growing along \vec{b} (Figure S18).

Figure S17. (A) View of the intermolecular contacts Br…H(15)' (2.9296(4) Å, equivalent positions: 1–x, 1/2+y, +1/2-z) rendering chains growing along \vec{b} . (B) View of the intermolecular contacts Br…H(15)' and C(14)"…H(27b) (2.7461(27) Å, equivalent positions: 1–x, 1/2+y, 1/2-z) rendering double chains growing along \vec{b} .

Adjacent double chains are joined by means of $Br \cdots H(4)$ ' contacts (Figure S19-A) rendering the 2D array shown in Figure S19-B.

Figure S18. View of (A) the intermolecular contacts H(4)'...Br (3.0027(4) Å, equivalent positions: -x, -y, -z) and (B) the 2D array resulting from the intermolecular contacts Br...H(15)", C(14)"...H(27b)"' (cf. Figure S18) and H(4)...Br. For clarity, i) green chains and orange chains are supported by Br...H(15)"; ii) pairing between adjacent green chains and between adjacent orange chains are supported by the Br...H(4)' contacts; and iii) pairing between adjacent orange and green chains are supported by the C(14)"...H(27b)"' contacts.

2.2- Intermolecular contacts in the crystal structure of $[IrBr(CO)_2(\kappa C-$ ^tBuImCH₂PyCH₂OMe)] (4).¹

Intermolecular contacts O(18)····H(3) and Br····H(14) result in the formation of chains growing along \vec{b} and $\vec{a} + \vec{b}$, respectively (Figure S20). Figure S21 shows the resulting 2D array.

Figure S19. View of the intermolecular contacts (A) $O(18)\cdots H(3)$ ' (2.533(5) Å, equivalent positions: x+1,+y+1,+z) and (B) $Br\cdots H(14)$ ' (2.878(1) Å, equivalent positions: x+1,+y+1,+z) rendering chains growing along \vec{b} and $\vec{a} + \vec{b}$, respectively.

Figure S20. (A) View of the 2D array resulting from intermolecular contacts $O(18)\cdots H(3)'$ and $Br\cdots H(14)'$ (*cf.* Figure S20). (B) Adjacent chains supported by intermolecular contacts $Br\cdots H(14)'$ are shown in yellow and purple. (C) Adjacent chains supported by intermolecular contacts $O(18)\cdots H(3)$ are shown in green and orange.

Also O(21)…H(19c) intermolecular contacts renders chains growing parallel to $\vec{b} + \vec{c}$ yielding the overall 3D packing of the asymmetric unit.

Figure S21. View of the intermolecular contacts O(21)…H(19c) (2.618(4) Å, equivalent positions: x+1,+y+1,+z+1) rendering chains growing along $\vec{b} + \vec{c}$.

It is worth a mention that additional intermolecular contacts are also present, namely $H(4)\cdots$ Br and $O(21)\cdots$ H(16) both rendering dimeric assemblies (Figure S23).

Figure S22. View of the dimers resulting from intermolecular contacts (A) $Br\cdots H(4)$ ' (2.960(1) Å, equivalent positions: 2–x, –y, 2–z) and (B) $O(21)\cdots H(16)$ ' (2.687(6) Å, equivalent positions: 2–x, –y, 1–z).

3.- Catalyst screening and optimization.

	NO ₂ + MeOH	2.5 mol% [i r] KO ¹ Bu (100 %) MeOH (2.5 mL) 383 K, 15 h	Aniline NH ₂ +	B N-methylaniline	
Catalyst		Conversion		Selectivity (%) ^b	
		(%) ^b A	A B	
1	-	-			
2	$[Ir(\mu-Cl)(cod)]_2$	10	0 7	3 27	7
3		3 10	0	8 92	2
4	H Br tr Co	4 10	0 4	4 96	5

Table S1. Catalysts evaluation for the N-methylation of nitrobenzene with methanol.^a

^a Reaction conditions: nitrobenzene (0.5 mmol), catalyst (0.125 mmol, 2.5 mol%) and KO'Bu (0.5 mmol, 100 mol%) in methanol (2.5 mL) at 383 K for 15 hours. ^b Conversion, based on the consumption of nitrobenzene, and selectivity determined by GC using mesitylene as internal standard.

Table S2. Influence of catalyst loading and temperature for the N-methylation of nitrobenzene with methanol catalyzed by $[IrBr(CO)_2(\kappa-C-^tBuImCH_2PyCH_2OMe)]$ (4).^a

	NO ₂	+ Me	eOH <u>4,</u> Cs ₂ MeC	4, Cs ₂ CO ₃ MeOH		² +	
				A Aniline	N	B I-methylaniline	
	T (K)	t (h)	4 (mol%)	Conversion (%) ^b	Selec A	tivity (%) ^b B	
1	403	24	0.5	100	0	100	
2	333	24	2.5	100	57	43	
3	333	48	2.5	100	14	86	
4	333	24	1	100	71	29	
5	333	48	1	100	26	74	

^a Reaction conditions: nitrobenzene (0.5 mmol, catalyst 4 (mol%), Cs_2CO_3 (0.375 mmol, 75 mol%) in methanol (2.5 mL). ^b Conversion, based on the consumption of nitrobenzene, and selectivity determined by GC using mesitylene as internal standard.

4.- Isotopic labeling experiments.

Figure S23. ¹H NMR (CDCl₃, 298 K): a) N-Methylaniline, b) N-Methylation of nitrobenzene with methanol- d_4 , and c) N-Methylation of nitrobenzene with methanol- d_1 .

5.- Isolation and characterization of N-methylated amines.

The reaction mixture obtained from catalytic reactions of N-methylation of nitroaromatic compounds, following the general procedure, was cooled to room temperature and then silica gel was added. The mixture was dried under vacuum and the residue transferred to a silica gel column and then eluted using the corresponding eluent described for each product.

N-methylaniline.² Nitrobenzene (0.5 mmol, 51 μ L). Purification by column chromatography (AcOEt/petroleum ether 15:85) obtaining 49 mg (92%) as a yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.30–7.18 (m, 2H), 6.80–6.64 (m, 3H), 3.72 (br, 1H), 2.87 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 149.0, 129.4, 117.9, 113.0, 31.2.

N,4-dimethylaniline.² 1-Methyl-4-nitrobenzene (0.5 mmol, 68 mg). Purification by column chromatography (AcOEt/petroleum ether 20:80) obtaining 59 mg (96%) as a yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.06–6.97 (m, 2H), 6.62–6.54 (m, 2H), 4.25 (br, 1H), 2.82 (s, 3H), 2.25 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 146.9, 132.1, 129.1, 113.0, 31.4, 20.5.

4-Methoxy-N-methylaniline.² 1-Methoxy-4-nitrobenzene (0.5 mmol, 76 mg). Purification by column chromatography (AcOEt/petroleum ether 30:70) obtaining 64 mg (93%) as a pale yellow solid. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 6.84–6.77 (m, 2H), 6.65–6.59 (m, 2H), 3.76 (s, 3H), 3.65 (br, 1H), 2.81 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 152.4, 143.4, 115.0, 114.0, 55.9, 31.9.

N-methyl-4-(methylthio)aniline.³ 4-Nitrothioanisole (0.5 mmol, 84 mg). Purification by column chromatography (AcOEt/petroleum ether 10:90) obtaining 72 mg (94%) as a pale yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.30–7.22 (m, 2H), 6.65–6.58 (m, 2H), 3.96 (br, 1H), 2.85 (s, 3H), 2.43 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 147.9, 131.6, 124.7, 113.4, 31.1, 19.3.

methyl 4-(methylamino)benzoate.⁴ Methyl 4-nitrobenzoate (0.5 mmol, 91 mg). Purification by column chromatography (AcOEt/petroleum ether 20:80) obtaining 77 mg (93%) as a yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.93–7.84 (m, 2H), 6.67–6.57 (m, 2H), 4.71 (br, 1H), 3.85 (s, 3H), 2.89 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 167.4, 152.3, 131.7, 119.1, 111.9, 51.7, 30.7.

N,2-dimethylaniline.⁴ 1-Methyl-2-nitrobenzene (0.5 mmol, 60 μ L). Purification by column chromatography (AcOEt/petroleum ether 10:90) obtaining 52 mg (86%) as a colourless oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.22–7.04 (m, 2H), 6.75–6.60 (m, 2H), 3.57 (br, 1H), 2.91 (s, 3H), 2.16 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 147.1, 130.1, 127.3, 122.3, 117.8, 109.6, 31.1, 17.5.

N,3-dimethylaniline.⁵ 3-Methyl-2-nitrobenzene (0.5 mmol, 59 μ L). Purification by column chromatography (AcOEt/petroleum ether 10:90) obtaining 48 mg (80%) as a yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.16–7.09 (m, 1H), 6.62–6.44 (m, 3H), 3.74 (br, 1H), 2.86 (s, 3H), 2.33 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 149.4, 139.1, 129.2, 118.4, 113.4, 109.8, 31.0, 21.7.

N-methyl-3-(trifluoromethyl)aniline.³ 1-Nitro-3-(trifluoromethyl)benzene (0.5 mmol, 66 μ L). Purification by column chromatography (AcOEt/petroleum ether 10:90) obtaining 79 mg (90%) as a colourless oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.33–7.25 (m, 1H), 7.00–6.93 (m, 1H), 6.86–6.74 (m, 2H), 3.82 (br, 1H), 2.88 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 149.3, 129.7, 126.3, 122.7, 115.8, 114.0, 108.8, 30.8.

N-methylpyridin-3-amine.² 3-Nitropyridine (0.5 mmol, 62 mg). Purification by column chromatography (AcOEt) obtaining 43 mg (80%) as a pale yellow solid. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 8.13–7.90 (m, 2H), 7.18–7.09 (m, 1H), 6.96–6.86 (m, 1H), 4.08 (br, 1H), 2.86 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 152.6, 137.3, 134.9, 124.2, 118.7, 30.4.

N-methylnaphthalen-1-amine.² 1-Nitronaphthalene (0.5 mmol, 86 mg). Purification by column chromatography (AcOEt/petroleum ether 25:75) obtaining 65 mg (82%) as a yellow oil. ¹H NMR (298 K, 300 MHz, CDCl₃): δ 7.88–7.77 (m, 2H), 7.53–7.26 (m, 4H), 6.69–6.61 (m, 1H), 4.50 (br, 1H), 3.04 (s, 3H). ¹³C{¹H} NMR (298 K, 75 MHz, CDCl₃): δ 144.5, 134.3, 128.8, 126.8, 125.8, 124.8, 123.6, 119.9, 117.6, 104.1, 31.2.

Figure S24. ¹H NMR of N-methylaniline.

Figure S25. ¹³C{¹H} NMR of N-methylaniline.

Figure S26. ¹H NMR of N,4-dimethylaniline.

Figure S27. ¹³C{¹H} NMR of N,4-dimethylaniline.

Figure S29. ¹³C{¹H} NMR of 4-methoxy-N-methylaniline.

Figure S30. ¹H NMR of N-methyl-4-(methylthio)aniline.

Figure S31. ¹³C{¹H} NMR of N-methyl-4-(methylthio)aniline.

Figure S32. ¹H NMR of methyl 4-(methylamino)benzoate.

Figure S33. ¹³C{¹H} of methyl 4-(methylamino)benzoate.

Figure S34. ¹H NMR of N,2-dimethylaniline.

Figure S35. $^{13}C{^{1}H}$ NMR of N,2-dimethylaniline.

Figure S36. ¹H NMR of N,3-dimethylaniline.

Figure S37. ¹³C{¹H} NMR of N,3-dimethylaniline.

Figure S38.¹H NMR of N-methyl-3-(trifluoromethyl)aniline.

Figure S39. ¹³C{¹H} NMR of N-methyl-3-(trifluoromethyl)aniline.

Figure S41. ¹³C{¹H} NMR of N-methylpyridin-3-amine.

Figure S42. ¹H NMR of N-methylnaphthalen-1-amine.

Figure S43. ¹³C{¹H} NMR of N-methylnaphthalen-1-amine.

9.- References

- Interatomic distances have been calculated using the program PARST (Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659) running under the suite WinGX (Farrugia, L. J. Appl. Crystallogr. 1999, 32, 837–838).
- a) Paul, B.; Shee, S.; Chakrabarti, K.; Kundu, S. *ChemSusChem* 2017, *10*, 2370–2374.
 b) Wheaton, C. A.; Bow, J.-P. J.; Stradiotto, M. *Organometallics* 2013, *32*, 6148–6161.
 c) Li, F.; Xie, J.; Shan, H.; Sun, C. Chen, L. *RSC Adv.* 2012, *2*, 8645–8652.
- Neumann, J.; Elangovan, S.; Spannenberg, A.; Junge, K.; Beller, M. *Chem. Eur. J.* 2017, 23, 5410–5413.
- 4.- Dang, T. T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082–4088.
- Sun, N.; Wang, S.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. *Tetrahedron* 2010, 66, 7142– 7148.