Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information:

CO₂ hydrogenation using bifunctional catalysts based on K-promoted iron oxide and

zeolite: Influence of the zeolite structure and crystal size

Elisa García-Hurtado, Aída Rodríguez-Fernández, Manuel Moliner,* Cristina Martínez*

Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de

Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain

e-mail: mmoliner@itq.upv.es, cmsanche@itq.upv.es

Supplementary Figures:

Figure S1: FT-IR spectra of acid zeolites BEA(10), n-BEA(10), MFI(10), MFI(30 and n-MFI(30) in the -OH vibration region (left) and in the adsorbed pyridine region after pyridine adsorption and desorption at 250°C (right).

Figure S2: Temperature-programmed desorption of ammonia of the calcined CHA(10) and n-

CHA(10)

Figure S3: PXRD patterns of the K-promoted iron catalyst fresh, reduced and recovered after reaction.

Figure S4: (a,b) FE-SEM images of K/Fe₃O₄ catalyst. (c,d,e) FE-SEM micrograph of K/Fe₃O₄ catalyst and its corresponding EDS elemental mapping for Fe (d) and K (e).

10 µm

10 µm

10 µm

Figure S5: Product distribution within the condensed liquid fraction observed by GC-MS using K/Fe_3O_4 and combination of K/Fe_3O_4 with BEA(10), MFI(10) and CHA(10).

Figure S6: Evolution of C₁-C₄ product selectivities with TOS catalyzed by K/Fe₃O₄ (a) and combination of K/Fe₃O₄ with BEA(10) (b), MFI(10) (c) and CHA(10) (d). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite (if required), T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂), WHSV=7 h⁻¹ (referred to Fe₃O₄)

Figure S7: Olefin to paraffin ratios in C₂-C₄ (a) and olefin yields (b) under steady-state conditions obtained with catalyst K/Fe₃O₄ and combination of K/Fe₃O₄ with BEA(10), MFI(10) and CHA(10). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite (if required), T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂), WHSV=7 h⁻¹ (referred to Fe₃O₄)

Figure S8: Product distribution within the condensed liquid fraction observed by GC-MS using K/Fe_3O_4 and combination of K/Fe_3O_4 with MFI(10), MFI(30) and n-MFI(30)

Figure S9: CO₂ conversion (a) and overall product selectivity (b) to CO (open symbols) and hydrocarbons (solid symbols) with time-on-stream (TOS) catalyzed by K/Fe₃O₄ and combination of K/Fe₃O₄ with MFI(10), MFI(30) and n-MFI(30). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite (if required), T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO_2), WHSV=7 h⁻¹ (referred to Fe₃O₄)

Figure S10: Evolution of C₁-C₄ product selectivities with TOS catalyzed by the combination of K/Fe₃O₄ with MFI(30) (a) and n-MFI(30) (b). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite, T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂), WHSV=7

h⁻¹ (referred to Fe₃O₄)

Figure S11: CO₂ conversion (a,c) and overall product selectivity (b,d) to CO (open symbols) and hydrocarbons (solid symbols) with time-on-stream (TOS) catalyzed by K/Fe₃O₄ combined with BEA-type zeolites (a,b) and CHA-type zeolites (c,d). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite (if required), T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂), WHSV=7 h⁻¹ (referred to Fe₃O₄)

Figure S12: Evolution of C₁-C₄ product selectivities with TOS catalyzed by the combination of K/Fe₃O₄ with BEA(10) (a), n-BEA(10) (b), CHA(10) (c) and n-CHA(10). Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite, T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8

 $N_2/34 CO_2$, WHSV=7 h⁻¹ (referred to Fe₃O₄)

Supplementary Tables:

Table S1: Average product distribution achieved using the different catalysts. Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite (if required), T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂), WHSV=7 h⁻¹ (referred to Fe₃O₄)

	K/Fe ₃ O ₄	+BEA(10)	+n-BEA(10)	+MFI(10)	+MFI(30)	+n-MFI(30)	+CHA(10)	+n-CHA(10)
Methane	9.2	11.5	12.1	11.5	8.6	10.0	11.9	11.7
Ethane	1.1	1.5	1.6	2.2	1.3	1.4	2.5	1.7
Ethylene	6.5	8.7	8.8	0.1	0.3	1.3	7.2	3.2
Propane	1.5	2.6	3.2	10.6	5.4	4.5	6.1	7.4
Propylene	10.2	10.8	9.8	0.4	0.6	1.5	12.1	13.5
iso-Butane	0.2	4.3	7.7	11.9	8.7	10.2	0.7	1.0
n-Butane	1.5	2.3	2.7	6.7	4.7	4.1	3.4	3.9
t-2-Butene	0.1	4.2	3.7	0.2	0.2	0.7	4.0	4.5
1-Butene	7.8	1.6	1.5	0.0	0.1	0.3	2.0	1.8
iso-Butene	0.6	2.0	2.6	0.3	0.4	1.4	1.6	3.0
c-2-Butene	0.2	2.7	2.5	0.1	0.1	0.4	2.9	3.0
iso-Pentane	0.4	3.5	5.4	9.7	8.4	8.4	0.9	1.1
n-Pentane	1.3	1.8	1.9	3.0	3.1	2.8	1.7	1.7
Pentenes	7.8	7.8	7.5	0.0	0.3	1.9	8.7	9.7
C_6^+	51.5	34.6	29.1	43.2	57.7	51.2	34.3	32.8
		1					1	

Table S2: Average aromatic products' selectivity achieved using the mixture of K/Fe₃O₄ with the different MFI catalysts at steady-state conditions. Reaction conditions: 0.5 g K/Fe₃O₄, 0.5 g zeolite, T=320°C, P=25 bar, H₂/CO₂ = 6 mol/mol, total flow = 142 ml/min (100 H₂/8 N₂/ 34 CO₂),

		MFI(10)	MFI(30)	n-MFI(30)
-	BTX	96.5	84.5	76.1
	AC ₉	2.3	10.3	12.5
	AC ₁₀	1.0	4.2	8.5
	AC_{11}^+	0.2	1.0	2.9

WHSV=7 h⁻¹ (referred to Fe₃O₄)